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AusDM 2009 
Analytic Challenge

The Challenge

In Brief: 

You have asked several experts to independently build you some mathematical models that will predict how your customers 
would rate particular movies. All the experts, who were given the same information on how previous movies were rated, 
provided predictions with very similar accuracies. While trying to determine which experts predictive methodology to use in your 
recommender system, you noticed that by simply averaging the predicted ratings of each expert, you ended up with a more 
accurate solution than any particular individual expert could produce alone. 

As predictive accuracy is paramount, you now want to determine if there is a better way of combining the predictions than 
simple averaging. 

The challenge is to find the most accurate method of combining your experts. 

More Detail: 

Ensembling, Blending, Committee of Experts are various terms used for the process of improving predictive accuracy by 
combining models built with different algorithms, or the same algorithm but with different parameter settings. It is a technique 
frequently used to win predictive modelling competitions, but how it is actually achieved in practice maybe somewhat arbitrary.  

One of the drawbacks in researching the problem is that you first have to generate a lot of models before you can even start. 
There have been numerous predictive modelling competitions that could potentially provide good data sets for such research - 
many models built by many experts using many techniques. 

The Netflix Prize is one such competition that has been on going for nearly 3 years. It recently finished, and the eventual 
winners were an amalgamation of several teams that somehow combined their individual model predictions. 

Over 1,000 sets of predictions have been provided by the two leading teams (who actually ended up with the same score), The 
Ensemble and BellKor's Pragmatic Chaos. The primary goal of this challenge is to stimulate research into 'Ensembling' 
techniques... but also answer the question many of us want to know - how low can Netflix go?  

By way of an example, the chart below shows the individual RMSE of over 1,000 models provided. Taking the mean prediction 
over all these models is only slightly worse than the best individual model. The mean of the best 10 models is significantly better 
than any individual model. 

The purpose of this challenge is to somehow combine the individual models to give the best overall model performance. 

http://www.tiberius.biz/ausdm09/index.html

http://www.tiberius.biz/ausdm09/index.html#
http://www.netflixprize.com/
http://www.the-ensemble.com/
http://www.the-ensemble.com/
http://www.research.att.com/~volinsky/netflix/bpc.html
http://www.tiberius.biz/ausdm09/index.html


 

 

The Data

The data provided for this challenge comes from 1,151 sets of predictions of integer ratings in the range (1-5). Each set of 
predictions was generated by mathematical models with the objective (generally) to minimise the 'root of the mean squared 
error' (RMSE) over the full set of over 1.4 million ratings. To those familar with the Netflix Prize, each of these sets of 
predictions would be what is known as a probe file, and we collected 1,151 probe files altogether. 

All the individual probe files were merged into one large file (1,151 columns, 1.4 million rows). Form this file, random sampling 
was used to generate 6 data sets for the challenge. Each of these data sets is split into 2 files, one for Training (Target/Rating 
provided) and one for Scoring (Target/Rating withheld). We will refer to the Rating as the 'Target' - the thing we are trying to 
predict. 

There are 2 small, 2 large and 2 medium data sets. You can use the small data sets for developing your techniques. Your 
predictions of the Targets for the small data set Scoring files can be uploaded and and feed back will be given on the 
performance. It is the predictions of the Targets in the medium and large data set Scoring files that will be used to determine 
the winner - no feedback is available for these.  

There are 2 tasks, one to develop a method to predict a continuous value and the other to predict a binary value. The metric 
used to detemine accuracy are different for each task. 

In each of the data sets, the Training and Scoring files are of the same size: 

The data sets are csv files with header rows. The first 2 columns are rowID and Target (actual rating) and then either 1,151 or 
200 columns of predicted rating values. In the Scoring files the Target values are zeros. 

For both the RMSE and AUC tasks, the predicted ratings values have been converted to integers by rounding to 3 decimal places 
and multiplying by 1,000. Thus each predicted rating will be an integer and should lie in the range 1,000 to 5,000. 

RMSE Small - 200 sets of predictions for 15,000 ratings. The objective is to minimise the RMSE. 

AUC Small - 200 sets of prediction for 15,000 ratings. Only ratings of 2 particular values are included (eg 1s and 5s), sampled 
with different weightings on each value. The objective is to minimise the AUC. 

RMSE Large - 1,151 sets of predictions for 50,000 ratings. The objective is to minimise the RMSE. 

AUC Large - 1,151 sets of predictions for 50,000 ratings. Again, these only include ratings of 2 particular values that may or 
may not be the same values used in the small set. The objective is to minimise the AUC. 

RMSE Medium - 250 sets of predictions for 20,000 ratings. The objective is to minimise the RMSE. 

AUC Medium - 250 sets of predictions for 20,000 ratings. Again, these only include ratings of 2 particular values that may or 
may not be the same values used in the small/large set. The objective is to minimise the AUC. 



 

For the RMSE tasks, the same transformation was applied to the actual (Target) rating. Your supplied predictions should also be 
on this scale (ie the scale 1,000 - 5,000) but can also have decimal places.  

For the AUC tasks, the Target values are 1 and -1 (zeros in the Scoring files). The actual values for your supplied predictions is 
not important, it is the rank order that matters. 

The solution files should be a text file with no header row and 1 number per row (ie 15,000 or 50,000 rows). They should be 
sorted in order of rowID but rowID should not be included in the file. 

Evaluation and Prizes

You can submit entries for the AUC, RMSE or both tasks - there will be winners in each category (only on the large and medium 
data sets). You can submit multiple times, but your last submission will be the one that counts. 

To be in contention to win, you must also provide a report (pdf format) outlining your methods. This can be as long or short as 
you like but should provide enough detail to give others a reasonable idea about how you approached the problem. If you submit 
entries for both tasks then only 1 report is required. Please include in the report your team name, team members and any 
affiliation. These reports will be made available on this site. 

There will be also be a 'Grand Champion'. This will go to the team with the lowest average rank over both the AUC and RMSE 
submissions (where only the ranks of teams who have entered both tasks for both large and medium data sets are taken into 
account, with the large having twice the weighting of the medium). In the event of a tie, only the large rankings will be 
considered, if still a tie then the team with the lowest error on the large AUC problem will be declared the winner. 

The 'Grand Champion' will receive $1,000 Australian Dollars. 

Bragging rights only to the rest! 

AUC - what is it? 

The Area Under the Curve (AUC) is one metric to quantify how well a model performs in a binary classification task. Given that 
the thing we are trying to predict has only 2 values (eg Class A/Class B, 1/0 , red/not red, rating 1/rating 5), how well does the 
model separate these values. In the data provided, the two values are coded as 1 and -1. AUC is a pretty simple concept and 
easy to calculate... 

Your model is trying to predict a value of 1 or -1. Sort your models predictions in descending order (that is the only role the 
predictions play!). Now go down the sorted list and for each prediction, plot a point on a graph that represents the cummulative 
% of class A v the cummulative % of class B that have actually been encountered upto and including that particular prediction. 
Join up all the points to form a curve. The AUC is the area under this curve. 



 

 

Area 1 + Area 2 + Area 3 = 1 (100%) 

AUC = Area 1 + Area 2 

Note that if the curve followed the diagonal line then the model has no ability to separate the 2 classes - it is no better than 
random. This would have an AUC of 0.5. An AUC of 1 is a perfect model (Area 3 disappears - 100% of class B have been found 
before any of class A) and an AUC of 0 is also a perfect (but backward) model. 
A similar metric is the Gini coefficient, which is essentially the same but scaled so that 1 represents a perfect model, 0 a random 
model and -1 perfect but backward.  

Gini = 2 * (AUC - 0.5)  

For this challenge we will be calculating the absolute value of the Gini coefficient, which means you do not have to worry about 
whether your model attempts to assign higher scores to class A or class B. 

We have include an Excel file on the download page that contains macro code to calculate the AUC. 

Important Dates

September 21, 2009
Bellkor's Pragmatic Chaos announced as winners of the Netflix Prize receiving $1million.

September 26, 2009
Challenge begins. Teams can register, download the small data sets and submit solutions to the leaderboard.

October 7, 2009
Medium data sets made available.

October 18, 2009
Large data sets made available.

November 8, 2009
Final Solutions and Reports can start to be submitted.

November 22, 2009



 

 

Challenge closes. Deadline for submitting solutions on the large and medium data sets and uploading a report.
The submission page will close when it is no longer Nov 22nd anywhere in the world. 

December 1-4, 2009 
Results announced at AusDM 2009 Conference. 

Other Information

Who can enter?
- Anyone, even the experts who supplied us with the rating predictions (and we hope they do).  

What about teams?
- You can enter either individually or as a member of a team - but not both. No individual can be in more than 1 team. Any large 
commercial organisations submitting multiple entries via single person teams will be disqualified. 

Supporting code 
- There is an Excel file on the download page that will calculate the AUC with VBA code showing how it's done.  
- We have also prepared a Visual Basic 2008 project that you can use as a framework. It prepares the data for fast loading 
and demonstrates very simple hill climbing and gradient descent methods. It will also automatically generate a submission file 
for the built models, so you can easily make submissions using the given algorithms and included executable. VB2008 Express 
Edition is available for free here. You might need to install the latest version of the .net framework if you just want to use the 
executable. 

Literature 
Please contact us with any relevant online research literature that may be useful and we will add it to the list below. 

Y. Koren, "The BellKor Solution to the Netflix Grand Prize", (2009) [see Section VII].  

A. Toscher, M. Jahrer, R. Bell, "The BigChaos Solution to the Netflix Grand Prize", (2009). [see Section 6]  

M. Piotte, M. Chabbert, "The Pragmatic Theory Solution to the Netflix Grand Prize", (2009) [see Section 4].  

Its already been calculated what a 50/50 blend of BPC and The Ensemble submissions would have achieved. Read more here.  

IBMs winning entry in the 2009 KDD Cup reference the following:  
Ensemble Selection from Libraries of Models  
Getting the Most Out of Ensemble Selection  

Team Gravity made their linear regression code available to all Netflix participants.  

Analysis of the PAKDD 2007 Competition entries  
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challenge. 
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Gavin Potter, William Roberts, Willem Mestrom, Bob Bell, Chris Volinsky, Yehuda Koren, Andreas Toscher, Michael Jahrer, Martin 
Piotte, Martin Chabbert, Xiang Liang, Jeff Howbert, Chris Hefele, Larry Ya Luo, Aron Miller, Craig Carmichael, Bo Yang, Bill 
Bame, Nicholas Ampazis, George Tsagas. 

Contact

If you have any questions please contact Phil Brierley via Email  

FAQs

If you have any questions, please post them in the Forum.  
Note that this is a free forum board and has a bit of downtime, so please be patient. 

Please explain this AUC problem a bit more? 
The AUC is just a common metric for determining how good a model is when the outcome is binary, we could quite easily have 
chosen the RMSE as the metric used to determine the winner. 
Not many 'off the shelf' algorithms seek to minimise the AUC directly, but generally speaking, improving the performance of one 
metric will tend to improve on all metrics. You will see in a previous competition that there were 4 metrics to optimise. The 
leading Tiberius entry submitted the same solution for all 4 tasks. So if you treat it as a linear regression problem and try to 
minimise the RMSE, then you should also be getting a decent AUC at the same time. 
In the supplied VB code we provide a hill climbing algorithm that seeks to maximise the AUC directly. 

Does the AUC submission file just have to contain 1s or -1s ?  
No, it can contain numbers of any value. 
You are trying to rank order them, not assign a particular value. 

Do I need to submit the actual rank orders in the AUC file ? 
No, the calulation algorithm sorts all this out. Just submit a file where the higher the number means the greater propensity. You 
don't even have to worry about whether high numbers mean greater propensity to be 1 or -1, this is all dealt with by the 
calculation algorithm. 

Sponsors

  

This challenge has been arranged and sponsored by Dr Phil Brierley of Tiberius Data Mining.  

If you are interested in the outcome of this research and would like to encourage the competitors by contributing to the prize 
fund (and getting your name here) then please get in touch.  

mailto:ausdm@tiberius.biz?subject=AusDM Question
http://ausdm09.freeforums.org/ensembling-challenge-f3.html
http://kodiak.cs.cornell.edu/cgi-bin/newtable.pl?prob=phy
http://www.tiberius.biz/
http://www.linkedin.com/in/philbrierley
http://www.tiberius.biz/
mailto:ausdm@tiberius.biz?subject=Sponsorship


RESULTS

Grand Champion and $1,000 prize winner:
NosferatoCorp (Andrzej Janusz)
University of Warsaw, Faculty of Mathematics, Informatics and Mechanics

Runner Up:
UniQ (Vladimir Nikulin)
University of Queensland, Department of Mathematics

Bronze:
barneso (Jeremy Barnes)
Barneso Consulting

Commendations:
LatentView (C. Balakarmekan, R. Boobesh)

ADM1 (Tom Au, Rong Duan, Guangqin Ma, Rensheng Wang)
AT&T Labs, Inc.-Research, USA 

Champions League - Final Standings

Medium Large

Team Name RMSE Rank Gini Rank RMSE Rank Gini Rank Points 

NosferatoCorp 881.650 2 0.392 1 865.861 1 0.6941 2 9

UniQ 881.884 5 0.3879 2 866.582 3 0.6972 1 15

barneso 882.125 8 0.387 3 866.514 2 0.6923 4 23

LatentView 881.322 1 0.3693 6 866.809 7 0.692 6 33

Kranf 882.383 10 0.3819 4 867.172 9 0.6924 3 38

hugojair 881.722 3 0.3643 10 866.738 5 0.6884 9 41

Baseline1 881.98 6 0.3687 8 866.785 6 0.6903 8 42

Innovative analysts 882.879 12 0.3691 7 868.541 11 0.6918 7 55

axct 881.985 7 0.3674 9 870.801 15 0.6921 5 56

tkstks 881.755 4 0.3613 13 867.273 10 0.6831 10 57

EnsembleMaster09 882.656 11 0.2703 19 866.643 4 0.522 19 76

Edr2 882.211 9 0.3353 16 869.127 13 0.6671 15 81

DMLab 883.038 13 0.3153 18 866.985 8 0.635 18 83

The final say 889.101 19 0.3694 5 873.55 18 0.6759 12 84

Team_EXL 886.394 18 0.3421 15 868.555 12 0.6686 14 85

Baseline2 885.299 15 0.3635 12 873.219 17 0.6702 13 87

DreamTeam 885.412 16 0.3635 11 873.638 19 0.6778 11 87

TULIP 884.128 14 0.3217 17 869.216 14 0.662 17 93

albert2 894.071 20 0.3606 14 883.029 20 0.6638 16 106

Green Ensemble 886.367 17 0.1327 20 872.25 16 0.3572 20 109

TUB09 7858.22 21 0.0315 21 8120.22 21 0.1234 21 126

http://www.tiberius.biz/ausdm09/results

http://www.tiberius.biz/ausdm09/results


medium RMSE

Rank Team Name RMSE Method

1 LatentView 881.322

The Champions 881.627 Average - Nosferato,UniQ,barneso

2 NosferatoCorp 881.650 crippledGMB

3 hugojair 881.722 bipso_blr_so12-Nov-2009091014_MEDIUM_RM

4 tkstks 881.755 Ensemble Selction

5 UniQ 881.884 lm_m

6 Baseline 881.98 Linear Regression Ensemble

7 axct 881.985 s150

8 barneso 882.125 Merged model

9 Edr2 882.211 Single Linear Perceptron

10 Kranf 882.383 elasticnet

The Ensemble 882.457 Average All Entries

11 EnsembleMaster09 882.656 LASSO

12 Innovative analysts 882.879

13 DMLab 883.038

14 ISMLL 883.109

15 BusinessResearch 883.852 MLP ensemble after stepwise selection

16 TULIP 884.128

17 Combador 884.643 Please refer to the report

18 Baseline 885.299 Linear Regression

19 DreamTeam 885.412 M_RMSE_ScoreMY1column.txt

20 Green Ensemble 886.367

21 Team_EXL 886.394 IE with random sets

22 Baseline 888.649 Average Top 10 Experts

23 The final say 889.101

24 KKUI TU Kosice 889.844 avg some models

25 Baseline 892.249 Best Expert

26 albert2 894.071

27 Baseline 894.827 Average All Experts

28 Baseline 947.88 Worst Expert

29 snustat 1461.93 random forest

30 snustat_mk 1461.93 rf

31 TUB09 7858.22 ComSUM

http://ccc.inaoep.mx/~hugojair
http://www.barneso.com/
http://www.applied-mathematics.net/
http://www.ismll.uni-hildesheim.de/personen/buza_en.html
http://www.businessresearch.ru/
http://www.cs.ait.ac.th/~guha
http://www.tmit.bme.hu/
http://research.shirazu.ac.ir/Faculty/More.asp?ID=828
http://www.exlservice.com/
http://blog.crossroad.sk/
http://www.yj.co.kr/
http://www.tu-berlin.de/


  
  
  
  
  
  
  
  
  
  
  

medium AUC

Rank Team Name Gini Method

The Champions 0.3928 Average Rank - Nosferato,UniQ,barneso

1 NosferatoCorp 0.392008 GeneticMetaBlender

2 UniQ 0.387888 glm_m

3 barneso 0.386991 Merged model

4 Kranf 0.381865 elasticnet

5 ADM1 0.381485 M_ALL5_Score

The Ensemble 0.3769 Average Rank All Entries

6 The final say 0.369404

7 LatentView 0.369343

8 Innovative analysts 0.369093

9 Baseline 0.3687 Logistic Regression Ensemble

10 axct 0.367385 s50

11 hugojair 0.36432 bipso_blr_so19-Nov-2009135305_auc_MEDIU

12 DreamTeam 0.363502 LogReg1version

13 Baseline 0.3635 Logistic Regression

14 tkstks 0.361324

15 albert2 0.360562

16 NeuroTech RDI 0.369282 Zoomed MLP

17 Team_EXL 0.342139 NN+BLASTING+IE

18 Edr2 0.335274 Best Combo of 10 Experts by GINI

19 Baseline 0.3284 Average Top 10 Experts

20 Baseline 0.3243 Best Expert

21 Baseline 0.3218 Average All Experts

22 TULIP 0.321704

23 DMLab 0.315261

24 EnsembleMaster09 0.270304 Gradient Boosting

25 Baseline 0.2522 Worst Expert

26 Green Ensemble 0.13271

27 TUB09 0.0315204 Comb

http://www.barneso.com/
http://www.applied-mathematics.net/
http://ccc.inaoep.mx/~hugojair
http://www.tmit.bme.hu/
http://www.neurotech.com.br/
http://www.exlservice.com/
http://research.shirazu.ac.ir/Faculty/More.asp?ID=828
http://www.tu-berlin.de/


  
  
  
  
  
  
  
  
  
  
  
  

  
  

large RMSE

Rank Team Name RMSE Method

1 NosferatoCorp 865.861 crippledGMB

The Champions 865.969 Average - Nosferato,UniQ,barneso

The Ensemble 866.160 Average All Entries

2 barneso 866.514 Merged model

3 UniQ 866.582 lm_L

4 EnsembleMaster09 866.643 LASSO

5 hugojair 866.738 bipso_blr_so19-Nov-2009131111_LARGE_RMS

6 Baseline 866.785 Linear Regression Ensemble

7 LatentView 866.809

8 DMLab 866.985 General linear

9 Kranf 867.172 elasticnet

10 tkstks 867.273 RSS003

11 ISMLL 867.875

12 BusinessResearch 868.312 MLP ensemble after stepwise selection

13 Innovative analysts 868.541

14 Team_EXL 868.555 Coefficient Blasting and bootstrapping

15 Edr2 869.127 Single Linear Perceptron

16 TULIP 869.216

17 axct 870.801 s300

18 Green Ensemble 872.25

19 Baseline 873.204 Average Top 10 Experts

20 Baseline 873.219 Linear Regression

21 The final say 873.55

22 DreamTeam 873.638 Reg1version

23 Baseline 880.269 Best Expert

24 Baseline 880.766 Average All Experts

25 albert2 883.029

26 Baseline 933.278 Worst Expert

27 TUB09 8120.22

http://www.barneso.com/
http://ccc.inaoep.mx/~hugojair
http://www.applied-mathematics.net/
http://www.ismll.uni-hildesheim.de/personen/buza_en.html
http://www.businessresearch.ru/
http://www.exlservice.com/
http://research.shirazu.ac.ir/Faculty/More.asp?ID=828
http://www.tmit.bme.hu/
http://www.tu-berlin.de/


  
  
  
  
  
  
  
  
  
  
  
  

large AUC

Rank Team Name Gini Method

1 ADM1 0.698372 L_ALL7_Score

The Champions 0.697159 Average Rank - Nosferato,UniQ,barneso

2 UniQ 0.697161 glm_L

3 NosferatoCorp 0.69407 GeneticMetaBlender

The Ensemble 0.69240 Ave Rank All Entries

4 Kranf 0.692358 elasticnet

5 barneso 0.692293 Merged model

6 axct 0.692122 s6

7 LatentView 0.691992

8 Innovative analysts 0.691773

9 Baseline 0.6903 Logistic Regression Ensemble

10 hugojair 0.688352 bipso_blr_so19-Nov-2009171830_auc_LARGe

11 tkstks 0.683087 es006

12 NeuroTech RDI 0.681153 MLP

13 DreamTeam 0.677822 L_AUC_ScoreMY1column.txt

14 The final say 0.675946

15 Baseline 0.6702 Logistic Regression

16 Team_EXL 0.668552 Blasting + PCA + NN

17 Edr2 0.667128 Best Combo of 10 Experts by GINI

18 albert2 0.663776

19 TULIP 0.661976

20 Baseline 0.6592 Average Top 10 Experts

21 Baseline 0.6532 Average All Experts

22 Baseline 0.6526 Best Expert

23 DMLab 0.635049

24 Baseline 0.5564 Worst Expert

25 EnsembleMaster09 0.521953 LASSO

26 Green Ensemble 0.357228 regression tree

27 TUB09 0.123444 Comb

http://www.applied-mathematics.net/
http://www.barneso.com/
http://ccc.inaoep.mx/~hugojair
http://www.neurotech.com.br/
http://www.tmit.bme.hu/
http://www.exlservice.com/
http://research.shirazu.ac.ir/Faculty/More.asp?ID=828
http://www.tu-berlin.de/


AusDM 09 Ensembling Challenge 
 

Phil Brierley – Tiberius Data Mining (http://www.tiberius.biz/) 
 

Baseline Entries 
 
 
 
The results tables contain some ‘Baseline’ entries for each data set. Here we briefly describe how 
these were generated. 
 
 
Baseline2 
 
In the final standings table, Baseline2 is basic linear regression for the RMSE sets and logistic 
regression for the AUC sets. All data in each of the training sets was used to build then models 
and then the coefficients applied to the scoring sets. 
 
 
Baseline1 
 
Baseline1 is similar in that it only uses logistic regression for the AUC sets or linear regression for 
the RMSE sets. Rather than a single model, multiple models are built on random sup populations 
of the data and then averaged to give a final prediction. This method and accompanying R source 
code was made available to all competitors via the competition forum. 
 
Fig 1 and Fig 2 demonstrate the benefit of this technique in preventing over fitting. The small 
RMSE train data was split 50/50 to create train and test sets. A linear regression model was built 
on the train set and then applied to the test set. The red and blue horizontal lines show the two 
RMSEs. Over multiple random 50/50 splits, it was always found that the test error was much 
worse then the train error. 
 
Numerous models were built using a random x% of the variables and y% of the cases of the train 
set data. Each new model was added to the ensemble with equal weighting, and the resulting 
ensemble model errors calculated on both the train and test sets. 
 
Fig 1 and 2 both show that the train set error never reaches the level achieved when all the 
available data is used in a single model, but the test set error does improve, which is the name of 
the game. 
 
In order to find the best settings, a simulation was performed that iterated through all combinations 
of %variables and %cases (in 5% bands), building ensembles containing 25 individual models. 
This is shown in Fig 3. It can be seen that the model error is more sensitive to the % of variables 
than the % of cases. The best error on the train set is when all variables are used, but this gives 
the worst error on the test set. The best test set error is achieved when less than 40% of the 
variables are used per model. 
 
Fig 4 shows a similar plot for the AUC data. 
 

http://www.tiberius.biz/


In the reported scores on the results tables, 50% of variables and 100% of cases were used for 
the medium and large RMSE sets (Linear Regression Ensemble), and 50% of variables and 50% 
cases for each model in the AUC sets (Logistic Regression Ensemble). 100 models per ensemble 
were used in all cases except the large AUC, which consisted of 50 models. It is not assumed that 
these are the optimal settings. 
 
For the RMSE task, the final result of the linear regression ensemble is a single linear regression 
model, as the coefficients are just averaged. This technique is just a way of arriving at a different 
set of coefficients. 
 
For the logistic ensemble, it is not as simple as just averaging the coefficients to obtain a single 
logistic model. 
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Fig 1 – each model in the ensemble as built using 30% of the 
variables and 30% of the cases 

Fig 2 – each model in the ensemble as built using 80% of the 
variables and 80% of the cases 
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Fig 3  – Choosing the best percentages of variables and cases for each model in the RMSE ensemble. Each ensemble contained 25 models. It can 
be seen that the errors are more sensitive to the %variables than the %cases. These plots were generated using the small RMSE train data set. 
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TEAM NAME: NosferatoCorp

TEAM MEMBERS: Andrzej Janusz (andrzejanusz@gmail.com)

AFFILIATION: University of Warsaw, Faculty of Mathematics, 
Informatics and Mechanics

USED METHOD: Genetic Meta-Blender

SUMMARY OF THE APPROACH:
GMB is a method for constructing ensembles of multiple classifiers which 
utilizes the idea of a genetic algorithm to optimize the proportions between 
the models in the final blend.
The assessment of samples from the score data sets was performed in two 
steps. First, for each training set a wide range of predictive models were 
constructed. Popular models available in standard R System libraries were 
used for the AUC task: linear and logistic regression models (library stats), 
neural networks (library nnet),  recursive partitioning trees (rpart), k-
nearest neighbors (class), the random forest (randomForest) and boosted 
regression models (gbm). The linear, logistic and neural network models 
were additionally averaged over multiple runs on different attributes 
subsets. The neural networks had one hidden layer which contained 1 to 5 
neurons.  The recursive partitioning trees were bagged and a few values of 
the complexity parameter were tried. The k-NN algorithm was used as a 
regression model, several k values between 50 and 150 were used. The 
boosted regression models were fitted with the bernoulli, gaussian and the 
adaboost loss functions. Due to lack of time for experiments with the 
parameters settings, only linear regression models and a simple neural 
networks were used for the RMSE task.
Each model's prediction values for samples from the training sets were 
acquired by the cross-validation test and used in the second step as an 
input for the blending algorithm. The genetic algorithm, which was 
implemented in R for the purpose of the Challenge, used different scoring 
functions for each of the tasks. It tried to directly maximize the AUC or 
minimize the RMSE by assigning significance levels to models in the 



ensemble. The total number of models included for the GA optimization in 
the final submission was dependent on the size of the datasets and the task. 
It was limited to 20 for the small and medium AUC data, to 25 for the 
large AUC data and to 10 for all sizes RMSE data. The restriction on 
number of models was introduced to avoid over-fitting. Some other 
precautions, such as a restriction on the granularity of the weights of the 
models, were also taken. The algorithm was stopped when the averaged 
quality of the population members didn't change significantly in 5 
consecutive generations.
Below, there is a comparison of the results of the final GMB model and 
the straight average of models from which it was constructed. The scores 
were computed after the challenge by the organizers and were included to 
this report at their request:
 
Medium AUC
GA = 0.3920
Ave = 0.3859
 
Medium RMSE
GA = 881.650
Ave = 881.616

Large AUC
GA = 0.69407
Ave = 0.69208
 
Large RMSE
GA = 865.861
Ave = 866.224

The GA optimization led to better results in 3 out of 4 datasets. The 
differences between the optimized and the averaged models are generally 
less significant for the RMSE task, which perhaps is due to lower 
diversification of the utilized models.



Ensemble Learning with Random Sampling
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Ensemble (including voting and averaged) classifiers are learning algorithms
that construct a set of many individual classifiers (called base-learners) and
combine them to classify test data points by sample average. It is now well-
known that ensembles are often much more accurate than the base-learners.

The data provided for this challenge1 comes from 1,151 sets of predictions
of integer ratings in the range (1-5). Each set of predictions was generated by
mathematical models with the objective (generally) to minimise the ‘root of the
mean squared error’ (RMSE) over the full set of over 1.4 million ratings2.

There were 2 small, 2 medium and 2 large data sets, which were divided into
2 equal parts for training and for testing.

Assuming that the distributions of the training and test datasets are the
same, the following approach appears to be the most natural: 1) select a few
top-performing and most uncorrelated predictions, and 2) build the final decision
function as a sample average. Using above approach, it will not be difficult to
optimise the optimal number of input predictions or predictors.

Let us consider Fig. 1(a) which may be regarded as an illustration to the fact
that the distribution within the training set is not stable.

The following method was used in order generate Fig. 1(a). We split randomly
large training set into two equal parts and computed

dit = RMSEit1 − RMSEit2, t = 1, . . . , 100,

where t is the number of iteration, RMSEit1 and RMSEit2 correspond to the
first and second parts, i is the index of the predictor. As an outcome, we found
standard deviations (STD) of the differences d for any particular predictictor,
see Fig. 1(a). It is interesting to note that all STDs are within the range between
6 and 7.5. On the one hand, low margin indicates very high level of volatility,
on the other hand, the difference between upper and low margins is rather small
(means that the level of volatility is a quite stable within the range of the given
set of predictors).

Based on our experimental results against small test set, we concluded that
the distributions of the medium and large test sets are also differ from the
corresponding training distributions.

In order to overcome the problem with ‘volatile’ distributions we decided to
use a popular method of random feature selection. We considered 4 main models:
1) GBM and GLM in R for the AUC-task; 2) LM in R and RLR (regularised
linear regression - our own code written in C) for the RMSE-task.

1 http://www.tiberius.biz/ausdm09/index.html
2 http://www.netflixprize.com/
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Fig. 1. (a) standard deviations of the particular predictions; (b) RMSE-scores of the
particular predictors in a sorted order.

Any particular decision function was computed as a sample average of a few
hundreds of base-learners, each of which was based on 30% - 50% of randomly
selected features.

Different decision functions were linked together using an ensemble construc-
tor as it is described in [1].

References

[1] Nikulin, V., McLachlan, G.J.: Classification of imbalanced marketing data with
balanced random sets. JMLR: Workshop and Conference Proceedings 7 (2009)
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Abstract

Up to 1151 “black box” movie recommenda-
tion models were combined into an ensemble
predictor. Significant success was achieved
on the binary AUC task, using a deep neu-
ral network, a gated classifier and multiple
logistic regression. Further improvement was
achieved by adding hand-coded features, and
by modelling the joint distribution of the
movie models using a SVD and denoising
auto-encoders.

On the large AUC task, the baseline1 AOC2

performance of 0.1635 was improved to
0.1461. On the more difficult medium task,
the baseline performance of 0.3384 was im-
proved to 0.3144, and on the small task, the
already low baseline of 0.0597 was slightly im-
proved to 0.0571.

Less success was achieved on the regres-
sion RMSE task. The best result, on the
large task, reduced the baseline of 0.4419 to
0.43853.

The “black box” nature of the challenge
and the underlying noise in the labels (to
which the RMSE score is particularly sensi-
tive) make progress difficult. An alternative
framework for ensembling is discussed which,
whilst placing more requirements on model
builders, would likely lead to better improve-
ment in the ensembles.

1. Introduction

The AUSDM ensembling challenge ran for approxi-
mately six weeks in October and November, 2009. The

1The average of the most accurate 20 models over a
held-out set of 20% of the training set.

2AOC = 1 - AUC
3These RMSE scores are calculated on a ratings scale

of [-1,1] not [1000,5000] as in the challenge, and should be
multiplied by 2000 to be comparable.

Shameless plug: I’m currently looking for consulting work:
Recommendation Engines, Machine Learning, Data Min-
ing, Data Analysis, Computational Linguistics

goal of the challenge was to combine existing person-
alised movie rating models into a more powerful en-
semble predictor. The dataset was derived from work
on the Netflix Prize (Netflix, 2007).

1.1. Netflix Prize

The goal of the Netflix Prize was to predict the rat-
ing (from 1 to 5) that a person would give to a film
on a particular date, given a training dataset that
contained examples of ratings that had already been
made. These predictions were then compared to rat-
ings collected from users to determine the efficiency of
the predictions.

Three datasets were provided: A training dataset with
100 million (user, date, rating) triplets; a disjoint
“probe” dataset with 1.4 million (user, date, rating)
triplets that were not included in the training set, and
a testing dataset with (user, date) pairs. The goal of
the challenge was to predict the rating for each of these
pairs.

The score was evaluated with the Root Mean Squared
Error (RMSE):

RMSE =

√√√√ 1
n

n∑
i=1

(xi − x̂i)2 (1)

where xi is the user provided rating and x̂i the model’s
prediction. This measure is quadratic in the magni-
tude of the errors, which makes it very sensitive to
outliers and noise.

The leading entries in this challenge came from coali-
tions of collaborating teams. The teams would inde-
pendently produce models that were trained only on
the training set. These models would then be run
to predict the values in both the probe and testing
datasets. These predicted results would then be ex-
changed within the group of collaborators, and a final
blended model would be produced, with the parame-
ters for the blend learnt from the probe set.

Blending was necessary in order to achieve competi-
tive performance, but most effort was expended in the
component models.
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Table 1. Problem sizes and row counts.

Size Training Testing Models Size

Small 15,000 15,000 200 15MB
Medium 25,000 25,000 250 25MB
Large 50,000 50,000 1151 300MB

Table 2. Label distribution for the large RMSE training
set (50,000 samples). The mean label is 3.67. The Mean
Model column gives the mean output over all models over
all examples rated with the given label.

Label Freq Percent Mean Model

1 2534 5.1 2.86
2 4877 9.8 3.09
3 12489 25.0 3.40
4 16422 32.8 3.76
5 13678 27.3 4.20

1.2. AUSDM Challenge

The AUSDM Challenge was designed to move the fo-
cus away from the component models and onto the
blending algorithm. The organisers first approached
the two leading coalitions from the Netflix Prize and
obtained from them the probe set results of all of their
models (some 1151 in total). From this large combined
set of data, random sampling was used to produce
twelve datasets, with three data sizes (Small, Medium
and Large as described in table 1), two problem types
(AUC and RMSE) and two datasets for each (a train-
ing set including target values, and a testing set with
the target values removed).

No information about which movie, user or date a pre-
diction applied was retained. As a result, the focus
was entirely on the properties of the blending algo-
rithms, as no side-channel information was available.
This point will be discussed below.

1.2.1. RMSE Task

The RMSE task in the AUSDM Challenge was iden-
tical to that in the Netflix Prize: minimise the RMSE
in equation 1.

Table 2 shows how the data is for this task is skewed
towards the higher ratings, with far fewer 1 and 2 star
ratings than the rest. As a result, the average model
predictions are tightly clustered around the label mean
of 3.67, and outliers are rare (the average model output
for the 1 label is 2.86, nearly 2 stars away).

Table 3. AUC Task and correspondence between ±1 and
star values, inferred from comparison of model means with
RMSE dataset.

Size -1 +1 AOC Top 20

Small 1 5 0.0597
Medium 2 3 0.3384
Large 2 4 0.1635

1.2.2. AUC Task

The AUC task was a binary ranking problem. Two
ratings were selected (for example, 1 star and 5 stars),
and rows with either one of these ratings were sampled.
These two rows were then assigned the labels +1 and
−1. The goal was to minimise the AUC score, which
is a measure of the ability to separate the +1 from the
−1 values via a real-valued confidence function. The
AUC score is linear in the magnitude of the errors.
It is possible to generate an AUC score from RMSE
values.

Table 3 shows details of the three tasks and the in-
ferred correspondence between the ±1 values and the
number of stars. A baseline AOC score using the av-
erage RMSE of the 20 models with the highest AUC
score is also provided4 Due to the different selection
of label values, the three tasks differ significantly in
the baseline score and their potential for improvement
over the baseline.

As a one-person team with limited time and labour,
most effort was expended on this task. It is arguable
that it represents better the real-world application of
recommendation engines5.

There should also be more improvement possible on
the AUC task, as the cost of making an error is linear
in the magnitude of the error, rather than quadratic
as in the RMSE task. Larger errors are therefore less
costly, and there should be some improvement possible
simply by spreading the model predictions away from
the mean.

4The AOC (area over the curve, AOC = 1−AUC) was
used so that the score could be interpreted as an error like
the RMSE.

5For example, Netflix presumably wants to optimise the
probability that someone who sees a recommendation rents
the film (or rents the film and doesn’t hate it): their rev-
enue is increased by people renting more films (more active
members have more profitable subscription levels and are
less likely to let their subscription lapse).

2
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2. Solution Strategy

Upon initial investigation of the problem, it became
obvious that highly non-linear methods (boosting, de-
cision trees, etc) were completely unsuitable to the
task at hand due to their high sensitivity to noise6.
Even the parameters for linear regression, one of the
smoothest models possible, would vary wildly. These
experiments led to the formulation of the following
strategy:

1. Model the accuracy of the models over the differ-
ent regions of the state-space;

2. Use a decomposition with an information bottle-
neck to reject noise and model the variation of
models explicitly;

3. Add hand-coded smooth features derived from the
model outputs to make model-building easier and
to reject noise.

4. Reject noise as aggressively as possible:

(a) Use ensembles of random samples of predic-
tors;

(b) Use noise-rejecting variants (such as ridge re-
gression) wherever possible.

5. Produce multiple models with as much diversity
as possible and merge them to produce the final
result.

2.1. Modelling State-Space Accuracy

It is unlikely that ensembling algorithm would ever be
sufficiently well informed to extrapolate outside the
range spanned by its component models, especially in
a black-box setting. A potential strategy is to interpo-
late between the models, weighting those that are more
likely to be accurate on a particular prediction more
heavily. A confidence function (a classifier for each
model) can be used to provide these gating weights.
Figure 1 illustrates this idea.

Several definitions of “accurate” were tried. For the
AUC task, we said that a prediction of 1 ≤ x̂ < 3
was accurate for the −1 label, and that 3 ≤ x̂ ≤ 5
for the +1 class. For RMSE, we tried to learn directly
the error (difference between the label and the predic-
tion) and a binary function of whether |x − x̂| < 1
(whether the predicted value was within one star of
the correct value). Crucially, each confidence function
had the benefit of information about the other model’s
predictions in order to generate its value.

6It was rare that any of these techniques would even
approach the baseline accuracy
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Figure 1. Gated Classifier Model. Note that all confidence
classifiers receive the value of all models, not just the one
for which it is generating a confidence value.

It proved to be extremely difficult to learn useful gat-
ing functions. The output of the function tended to
be nearly identical over all input models, and thus the
gating returned a value close to the average of the mod-
els.

2.2. Decompositions

By decomposition, we mean a way of reducing a set
of 1151× 50000 independent values (the outputs of all
of the models over all examples) into a smaller dimen-
sional space that preserves as much of the behaviour
of the 1151 values7.

These techniques are also known as “information bot-
tleneck” methods or auto-encoders, tend to use some
kind of a factorisation (explicit or implicit) to approxi-
mate a dataset with a large number of free parameters
with a much smaller number of free parameters (for
example, 50 or 200). They work by learning an (en-
coder, decoder) pair. The encoder reduces the 1151
dimensional input vector into a smaller internal repre-
sentation. The decoder takes the encoded vector and
reproduces the 1151 values as much as possible. A
good encoder/decoder pair will do this without intro-
ducing much of an error. Frequently, the effect of the
(encode, decode) sequence will be to remove noise from
the input whilst keeping its essential characteristics.
The encoded values can then be said to represent the
deep structure of the data.

None of these techniques need to know the values of the
7In this section, we use numbers from the Large task

for concreteness.

3
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ratings: they model the joint distribution of the input
models. They can be trained on an unlabelled set of
data (for example, the testing set) to avoid biasing the
training set.

2.2.1. Singular Value Decomposition

The simplest decomposition used was the SVD (Deer-
wester et al., 1990). It uses linear algebra to generate
an optimal reduced rank representation of a series of
models.

Applying the SVD to a matrix M breaks it down as
follows:

M = UΣV T (2)

where M (for the large contest) is the 50, 000 × 1151
matrix of the model outputs, U is a 50, 000 × 1151
matrix of left-singular orthonormal vectors, Σ is a
1151 × 1151 diagonal matrix with diagonal entries
[σ1σ2 . . . σ1151] and V is a 1151×1151 matrix of right-
singular orthonormal vectors.

The σ values in Σ are all non-negative and are in de-
creasing order of magnitude. In order to reconstruct
the best possible approximation of M of rank n, it is
sufficient to set

M ≈ M̂ = UnΣNV
T
N (3)

where M̂ is a 50, 000× 1151 rank-n approximation to
M , Un is a 50, 000 × n matrix containing the first n
columns of U , Σn is a n×n diagonal matrix containing
the first n rows and columns of Σ, and Vn is a 1151×n
matrix containing the first n columns of V . The error
of any element in M is bounded by the magnitude of
the excluded singular values

∑1151
i=n+1 σi.

This matrix can be used to reduce an 1151 element
model vector x into a n-dimensional representation z
which contains as much of the information in x as pos-
sible. Simply take

z = Σ−1
n V T

n x. (4)

The features in z contain as much as possible of the
information in x, but in much fewer dimensions (typi-
cal values of n used in the challenge were 50, 100 and
200), and as a result have much of the noise removed.
Even if the number of dimensions is not reduced, the
z values tend to make better features for classification
as they are orthogonal from each other.

We can also produce x̂, which is a reconstituted version
of x produced from z:

x̂ = VnΣnz (5)

and measure its error:

E = ||x− x̂|| (6)

If E is small, the information in z was sufficient to
capture all of the information in x. If E is large, it
means that one or more of the dimensions excluded
from the decomposition was important.

2.2.2. Denoising Auto-Encoder Decomposition

One problem with the singular value decomposition
is that the the decomposition is entirely linear. A de-
noising auto-encoder (Vincent et al., 2008) can be used
to generate a non-linear decomposition, which can ap-
proximate a much larger set of (non-linear) underlying
phenomena.

The goal of an auto encoder is to learn the iden-
tity function: two functions f(·) and g(·) such that
f(g(x)) = x. Generally, in order to be interesting an
auto-encoder will include some kind of restriction: for
example, the number of dimensions in the range of f is
smaller than the number of dimensions in its domain.

In neural networks, the most commonly used formula-
tion shares an activation matrix W between the for-
ward and reverse directions:

z = f(x) = t(Wx + b) (7)

x̂ = g(z) = t(WT z + c) (8)

When t(·) is a non-linear squashing function such as
t(x) = tanh(x), we can use back-propagation to learn
a nonlinear decomposition.

Note that these auto-encoders can be stacked one on
top of the other, so that we apply all of the forward
functions one after the other and then all of the reverse
directions in the opposite order.

In order to make the auto encoder generalise (and learn
higher level features), we need to either a) add noise
to the input (and train the auto encoder to remove the
noise) and/or b) create an “information bottleneck”,
by reducing the number of neural network units lower
down in the stack. This leads to the architecture used
in the challenge, which is shown in figure 2:

In order to train the auto-encoders, a standard back-
propagation algorithm can be used to perform gradient
descent on the parameter space. Normally, a stack

4
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Figure 2. Denoising auto-encoder decomposition used in
the challenge.

of auto encoders will be trained a layer at a time on
the output of the previous layer (in a greedy manner),
although it is possible to train the entire stack at once.
Both methods were used in the challenge.

Improvements Several improvements were made to
the auto-encoder model described previously.

Firstly, it is known that a linear neural network un-
der the right conditions will approximate the singular
value decomposition. It would make sense for the auto
encoder described in the previous section to be able to
do so. However, if we set t to the identity function and
W = Σ−1

n V T
n in 7 as in equation 4 (ignoring the bias

terms), we get

z = Σ−1
n V T

n x (9)

and so

x̂ = Vn

(
Σ−1

n

)T
Σ−1

n V T
n x = Σ−2

n x (10)

where we rely on the fact that V TV = I due to V
being orthonormal.

Thus, this auto-encoder can only reproduce its input,
no matter the dimensionality, if all of the singular val-
ues of our data matrix are unitary, which is rarely
true. The alternative of not including Σn in the en-
coder function is not satisfactory as this will cause the
neurons corresponding to the high-valued singular val-
ues to dominate the training.

To rectify this problem, we added two extra terms to
the decoding function 8:

x̂ = t(DWTEz + c) (11)

where D and E are diagonal matrices that control the
input and output gain of the activation matrix WT .
Then, by setting W = Σ−1

n V T
n , E = I and D = Σ−2

n

we can achieve our goal of emulating the SVD.

A second improvement was made to the treatment of
noisy inputs. In (Vincent et al., 2008), noisy inputs
are simply set to zero. This causes problems with the
auto encoder, as the same weight in W is simultane-
ously trying to reject noise, contribute to the hidden
state and reproduce the output from the hidden state.
Instead, as plenty of data was available, we used a
separate activation matrix WN for the noisy inputs.
Those inputs which were chosen to be noisy were as-
sumed to have an input value of 1 and connected via
WN instead of W to the hidden layer. This change sig-
nificantly increased the accuracy of the reconstruction
in the no-noise case8.

The third improvement was made in the addition of
noise. It was observed that the auto-encoders actually
were better at reproducing the (noiseless) input when
that input had noise added than when it was presented
in a pristine state. This was because the auto-encoders
were depending upon a certain number of their inputs
having the value zero: if 20% noise is added and an
internal state represents the mean of the inputs, then
that state is going to be 125% the mean when no noise
is present. In order to prevent the auto-encoders from
expecting the noise to be present, every second exam-
ple was presented with no noise added. Again, this
change significantly increased the auto-encoder’s re-
construction performance in the noiseless case.

2.3. Derived Features

In order to make it easier for the classifiers to work,
the component models were augmented with several
derived features:

• The minimum, maximum, mean and standard de-
viation of the model outputs;

• For of the 10 highest ranking models:

– The minimum, maximum and mean value;
– Variables comparing the spread of values over

these 10 models and the spread of values over
all of the models;

– For each of the 10 models, the output of the
model and the number of standard deviations

8It has not been proved that an auto-encoder needs to
do a good job of reconstruction in order to provide a useful
decomposition, but intuitively it seems necessary.

5
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from the mean of all models;
– The difference between the output of this

model and the closest integer;
– If a decomposition was used, the error of the

reconstruction of this model by the decom-
position;

• The output of the decomposition (SVD or Denois-
ing Auto-Encoder), if there was any;

• The RMS error of the decomposition, as in equa-
tion 6.

2.4. Multiple Models

Highly non-linear algorithms such as decision trees, re-
gression trees and especially meta-algorithms like Ad-
aboost tend to have big problems dealing with noise.
One way of mitigating this effect is by averaging mod-
els trained over random subsets of the data. The fol-
lowing techniques were used:

• Random decision trees and regression trees were
used to train the final classifier in the gated mod-
els. The most successful model used 500 bags
(with random selection of examples) of 10 iter-
ations of boosted random decision trees (with a
random subset of the features).

• Wherever regression (linear or logistic) was used,
the regression was performed multiple (20-500)
times and the average of the models taken. A
random subset of examples and of features was
chosen.

2.5. Ridge Regression

Ridge regression was used in place of linear regression
in all circumstances, including within the Iteratively
Reweighed Least Squares routines used to calculate
the logistic regression coefficients (Komarek & Moore,
2005).

Ridge regression is a regularised form of linear regres-
sion, that penalises high weights in the model coef-
ficients x. The algorithm calculates the value of the
vector x that minimises the following error:

E = ||Wx−b||+λ||b||2 ← Regularisation term (12)

The coefficient λ describes the trade-off between fitting
the data and reducing the size of the parameters in x.
The optimal value of λ can be efficiently calculated
using leave-one-out cross validation.

Input (200-1151)

Hidden 1 (250)

Hidden 2 (150)

Hidden 3 (100)

Hidden 4 (50)Extra
Features
(~100)

Hidden 5 (50)

Output (1)

Initialised
from
DNAE

Figure 3. Deep Network Model.

Ridge regression also has the advantage of working well
on rank-deficient or poorly conditioned problems, un-
like standard linear regression. This is important in
the context of this work: there are a lot of small, but
not insignificant singular values in the data.

2.6. Deep Neural Network Model

The denoising auto-encoders are trained with no
knowledge of the target feature. By adding an extra
output layer or two and training the entire resulting
network with back-propagation, the features that it
has learnt in its internal representation can be fine-
tuned to help produce a target output (here, the label
for the AUC or RMSE model). Figure 3 illustrates the
architecture.

3. Method

In order to generate results, a large number of pre-
dictors were trained implementing the ideas described
above. Each of these predictors was trained on 80%
of the training data, with the other 20% (always the
same part) held out in order to train the final blending
model. When each predictor was run, it created:

1. A blending results file containing the model’s un-
biased prediction for each entry of the 20% of final
blending data held out;

2. A submission results file containing the model’s
prediction for each entry of the scoring set (for
which labels weren’t available).

6
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Table 4. Denoising Auto-Encoder Decompositions. Layer
Iter is the number of back-propagation iterations that each
layer was trained by itself, Stack Iter is the number of back-
propagation iterations that the entire stack was trained
after each layer was added. Bug indicates the presence of
a bug described in section 3.1.

Model Layer Iter Stack Iter Bug

dnae1 500 500
√

dnae2 800 0
dnae3 400 200

Once all of the files were available, they were combined
using a final blending stage, the result of which was the
submitted result.

3.1. Decompositions

A total of four decompositions were generated: one
SVD decomposition and three denoising auto-encoder
decompositions. Table 4 shows the parameters used.
In each case, the layer sizes are as indicated in 2.
Learning rates were set via manual tuning. On the
small dataset, 80% of the examples were randomly se-
lected on each iteration; 50% on the medium and 10%
on the large. The presentation order of examples was
random. The bug referred to in the table when train-
ing DNAE1 was the use of the non-noisy input vector
when back-propagating, leading to noisy inputs being
incorrectly updated.

3.2. Multiple Regression

The multiple regression predictors turned out to be the
most powerful, particularly in the RMSE task. This
is largely due to their ability to reject noise due to
their inherent smoothness, the regularisation provided
by ridge regression and the smoothing provided by the
random selection of features and examples.

Table 5 describes the parameters for the different mod-
els. In all cases, 500 separate regression models were
combined (linear regression for the RMSE task; logis-
tic regression for the AUC task) on 6,000 randomly
selected examples. On the small task, the number of
features sampled and the decomposition order were set
to 100; for the medium task 150 and for the large task
200. When extra features were used, they were sam-
pled along with the model outputs.

3.3. Deep Neural Networks

Table 6 describes the deep network models used. Each
of these had an architecture with 250, 150, 100 and
50 units (from the denoising auto-encoders) and an-

Table 5. Multiple Regression Models Used

Model Decomposition Extra Features

mr1
mr2 SVD
mr3 SVD

√

mr4 DNAE1
mr5 DNAE1

√

mr6 DNAE2
mr7 DNAE2

√

mr8 DNAE3
mr9 DNAE3

√

Table 6. Deep Network Models Used

Model Decomposition Extra Features

dn1 DNAE2
√

dn2 DNAE2
dn3 DNAE3
dn4 DNAE3

√

other 50 hidden units feeding into the single unit out-
put layer. The extra features are not fed in the top,
but directly into the 50 unit hidden layer, bypassing
the auto-encoder. Standard tanh units were used.

3.4. Gated Merger

Several models of the “gated” merger described in 2.1
were tried. This model tended to perform reasonably
well for the AUC task, but poorly for the RMSE task.
Presumably, this is because the two-stage nature of
the model caused the noise to be amplified between
the stages.

The models differed in which decomposition they used
(no decomposition, the SVD or the denoising auto-
encoders), whether or not they used extra features,
and the technique used for the final score once the
confidence-modified values had been produced. Table
7 shows these parameters.

3.5. Classifier Models

For the RMSE data, two classifier models were used.
One, rtrees used a random forest of 200 regression
trees. The other, mclass, learnt a binary classifier for
several discrete movie ratings (1, 2, 3, 4 or 5 stars;
2-5 stars; 3-5 stars; 4-5 stars) using a random forest
of 5000 decision trees, and combined these predictions
using linear regression. Neither model performed par-
ticularly well.

7
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Table 7. Gated Merger Models Used

Model Decomp. Blend RMSE Blend AUC

gated SVD(200) LR Rand Forest
gated2 LR Rand Forest
gated3 DNAE1 LR Rand Forest
gated4 DNAE2 LR Rand Forest
gated5 DNAE3 LR Rand Forest
gated6 DNAE3 Rand Forest N/A
gated7 DNAE3 Multi LR N/A

3.6. Final Blending

Final blending was performed using a cross-validation
training on the 20% held out data. The held out data
was broken into 10 folds, and 10 different multiple re-
gression blenders were trained, each training on 9 and
leaving out one fold. The performance of the merged
model on the entire 20% held out was then evaluated.
The challenge submission files were generated by run-
ning the 10 multiple regression blenders over the entire
testing set, and averaging the results.

This strategy was adapted in order to reduce the im-
pact that a “rogue” model (with a high error rate,
or over-fit on its training data) would have on the fi-
nal blend. It is unlikely that performing (yet another)
round of blending of already blended models would
significantly improve the results; this bootstrapping
with no additional leverage. Uniform linear blending
appeared to work just as well.

3.7. Implementation

In practise, this challenge turned out to be as much
about software engineering as about data mining.

The biggest reason for this was the amount of noise in
the data. This necessitated that models be run many
times (up to 500) and the results averaged, with a
corresponding increase in compute time.

Due to the limited hardware resources available9 and
the large number of tasks, it was necessary that the
software be both memory and CPU efficient. The en-
tire code was vectorised to take advantage of the vector
unit, multi-threaded10 and the bottlenecks were pro-
filed and carefully optimised. Single precision arith-
metic was used wherever possible11 due to its two-fold

9One quad core “hyper-threaded” (8 virtual cores) desk-
top machine with 6GB of RAM, one dual core laptop with
2GB of RAM

10On the desktop machine, 8 threads were run to fully
exploit the hyper-threaded processor

11It is frequently not possible. For example, whenever

advantage in execution speed on modern hardware.

To save memory bandwidth, parameters were stored
using as small a precision as possible and care was
taken not to duplicate memory when splitting datasets
into training and validation sets.

The fact that there were six different tasks (AUC and
RMSE for the small, medium and large datasets) also
increased the amount of CPU time and engineering
work required, especially in manually tuning the back-
propagation parameters.

In the end, about 5,000 lines of C++ code were written
for the challenge directly, and about 10,000 lines added
to the underlying machine learning library (primarily
the code to perform Ridge Regression and the denois-
ing auto-encoder routines). The entire set of results
could be reproduced in about 24 hours on a consumer
desktop PC.

The software was developed on Linux. The only signif-
icant external libraries used were LAPACK and BLAS
for the linear algebra routines.

3.8. Open Source

The source code for this submission is avail-
able. The machine learning library used
to perform the heavy lifting is available at
http://bitbucket.org/jeremy barnes/jml/. The
source code of the actual AUSDM submission is
available at http://github.com/jeremybarnes/ausdm.
Both are available under the Affero GNU Public
License version 3. The ausdm repository also contains
some of the data files used in the building of the
results.

4. Results

4.1. Diversity and Independence of Model
Predictions

Table 8 shows the distribution of singular values over
the six tasks. The top part lists values of the singular
values; the bottom part lists counts of various cate-
gories.

The spread of the singular values give an idea of the
diversity of the models in the data: the small singular
values correspond to models that don’t contain much
more information over and above those with higher
singular values. The small task appears to have little
redundancy in the provided models, whereas the large
task has significant redundancy, and potentially even

accumulating a series of numbers it is necessary to accu-
mulate in double precision even if the numbers being ac-
cumulated are only in single precision.

8
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Table 8. Independence and Conditioning of Models. The
singular values of each data matrix were taken. The top
half lists values (highest, second highest and lowest); the
bottom half shows a histogram over orders of magnitude.

Small Medium Large

Type AUC RMS AUC RMS AUC RMS

Top 936 806 674 1040 2830 3538
2nd 69 55 83 77 257 253
min 0.9 0.9 0.4 0.8 10−5 10−5

> 100 1 1 1 1 9 9
> 10 72 59 88 87 433 428
> 1 199 197 247 249 1071 1074
> 0.1 200 200 250 250 1143 1143
≤ 0.1 0 0 0 0 8 8

models that were (pre-blended) linear combinations of
others.

4.2. Decompositions

Table 9 shows the reconstruction accuracy of the de-
compositions of different orders over the training sets.
The reconstruction accuracy increases as we move from
DNAE1 to DNAE2 to DNAE3, but that they aren’t as
efficient at reproducing the data as the SVD. This is
a disappointing result: the non-linearities were either
not being exploited or were not useful. DNAE3 is par-
ticularly interesting, as it shows the effect of training
the stack as a whole rather than each layer individu-
ally. Doing so reduces the efficiency of the individual
layers as separate auto-encoders, but to improves the
entire stack.

Looking at the results of the gated (SVD decom-
position), gated3 (DNAE1 decomposition), gated4
(DNAE2 decomposition) and gated4 (DNAE3 decom-
position) algorithms (which differ only in the decom-
position used), it appears that the SVD decomposition
is the most useful, followed by the DNAE3, DNAE2
and DNAE1 decompositions. These results are dis-
appointing. It is possible that allowing interactions
between the features (as in (Larochelle et al., 2009))
would improve matters, but as they stand these results
would have to be considered a failure.

4.3. AUC Results

We present the AUC results in table 10, showing the
performance of both the component models and the
blended result. The table for each task contains two
columns of numerical information. The first describes
the error score of the model, with the lift (reduction
in error) as compared with the baseline model, multi-

Table 9. Decomposition reconstruction accuracies. These
are the total RMSE over all inputs for different decompo-
sitions as the order (dimensionality) of the decomposition
varies.

Set Order SVD DAE1 DAE2 DAE3

250 0.00 0.86 0.81 6.51
S 150 0.20 1.48 1.15 3.51

AUC 100 0.44 1.99 1.30 1.92
50 0.72 2.22 1.40 0.92

250 0.00 0.62 0.62 3.58
M 150 0.30 1.09 1.02 3.44

AUC 100 0.48 1.52 1.42 2.87
50 0.74 1.97 1.80 0.90

250 1.00 2.08 2.18 17
L 150 1.31 3.24 3.05 4.88

AUC 100 1.52 4.18 3.74 2.98
50 1.84 5.01 4.34 2.08

250 0.99 2.31 2.51 23
L 150 1.30 3.58 3.42 5.52

RMSE 100 1.51 4.56 4.08 2.84
50 1.82 5.38 4.49 2.08

plied by 1000. The second shows the average blending
weight of the model (over 10 folds) as well as the stan-
dard deviation in this value. The blending weights
give an idea of the importance of the model to the
final result.

The multiple regression models appear to be the most
consistently accurate, followed by the gated models.
The deep network models appeared to be used mostly
to attenuate noise, as their blending weights were more
negative than positive. The greatest lift was obtained
on the medium task (which was also the hardest, and
consequently had the most scope for improvement).
A significant improvement was also obtained on the
large task. The lift on the small task was small, but
(as will be discussed below) there was not much scope
for improvement due to the noise ceiling.

It is instructive to compare the multiple regression
models to determine the effect of the various strate-
gies. Recall from table 5 that mr1 contained only the
component models, mr2 augmented this with an SVD
and mr3 with the extra features. Any improvement in
mr1 is therefore attributable to the calibration of the
component scores from the RMSE (quadratic error)
task to the AUC (linear error) task.

It seems that most of the improvement is due to the
extra features, as mr1 and mr2 are not significantly dif-
ferent, but mr3 is always significantly better than the
others. On the other hand, it appears from the rest
of the mr results that, especially on the large task, the
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Table 10. AUC Blending Results. The lift is 1000 times the improvement over the baseline score. The weight values,
which describe the blending weight in the final model, are reported as mean ± standard deviation.

Task Small Medium Large

Model AOC Lift Weight AOC Lift Weight AOC Lift Weight

dn1 0.0585 1.2 -0.36±0.32 0.3299 8.5 0.04±0.23 0.1581 5.4 -0.41±0.20
dn2 0.0611 -1.4 0.20±0.19 0.3431 -4.7 -0.51±0.22 0.1634 0.1 -0.05±0.21
dn3 0.0611 -1.4 0.19±0.17 0.3432 -4.8 -0.49±0.19 0.1634 0.1 -0.60±0.23
dn4 0.0585 1.2 -0.34±0.30 0.3300 8.4 0.05±0.24 0.1581 5.4 -0.83±0.31

gated 0.0565 3.2 0.80±0.23 0.3239 14.5 0.60±0.25 0.1497 13.8 1.09±0.27
gated2 0.0584 1.3 0.26±0.24 0.3318 6.6 -0.08±0.27 0.1528 10.7 0.32±0.24
gated3 0.0592 0.5 -0.55±0.35 0.3282 10.2 0.09±0.29 0.1524 11.1 0.19±0.32
gated4 0.0586 1.1 -0.02±0.29 0.3303 8.1 -0.26±0.44 0.1528 10.7 -0.64±0.33
gated5 0.0580 1.7 0.37±0.14 0.3264 12.0 0.11±0.31 0.1519 11.6 0.32±0.13

mr1 0.0639 -4.2 0.23±0.33 0.3208 17.6 0.47±0.47 0.1581 5.4 -0.08±0.39
mr2 0.0633 -3.6 0.18±0.33 0.3203 18.1 0.46±0.49 0.1584 5.1 -0.88±0.30
mr3 0.0575 2.2 0.57±0.51 0.3174 21.0 0.03±0.51 0.1499 13.6 1.84±0.69
mr4 0.0573 2.4 0.39±0.27 0.3196 18.8 0.82±0.34 0.1508 12.7 -0.75±0.38
mr5 0.0574 2.3 -0.29±0.29 0.3128 25.6 0.80±0.44 0.1485 15.0 1.58±0.47
mr6 0.0573 2.4 0.51±0.30 0.3201 18.3 0.61±0.22 0.1505 13.0 0.13±0.29
mr7 0.0573 2.4 -0.21±0.25 0.3135 24.9 0.65±0.42 0.1485 15.0 0.74±0.43
mr8 0.0572 2.5 0.90±0.60 0.3186 19.8 -0.06±0.30 0.1500 13.5 2.04±0.57
mr9 0.0574 2.3 -0.04±0.16 0.3146 23.8 0.24±0.24 0.1484 15.1 0.58±0.66

combined 0.0571 2.6 0.3144 24.0 0.1461 17.4

DNAE models provide a useful substitute for the ex-
tra features, whereas the SVD does not. Or in other
words, the DNAE decompositions manage to implic-
itly capture most of the information in the extra fea-
tures whereas the SVD does not.

The deep network models (dn1 to dn4) did not perform
well, but were improved by adding the extra features.

In all cases, the gated model worked better than
gated2 through gated4. As these models always had
extra features available, this shows that the SVD de-
composition is more useful than the DNAE decompo-
sitions.

Overall, the AUC results successfully provided a mod-
est lift. It was particularly encouraging to see that the
merged model on the large dataset was significantly
more accurate than any of its component predictors.

4.3.1. Noise

The small AUC task was particularly noisy, and only
a small improvement seems possible. One explana-
tion for this would be the selection of target values
for this task, which are (−1 → 1) and (+1 → 5).
These two values, and particularly the value 1, are
associated with extreme emotional reactions to films
by users, much of which cannot realistically be mod-

elled12. The relative scarcity of 1 rankings in the
dataset also makes them more susceptible to noise (ac-
cidental mouse clicks, distraction, cats walking on key-
boards, etc), which are probably uniformly distributed
over the dataset. When adapting to the large and par-
ticularly the medium task at the end of the challenge,
it was observed that noise was much less of a problem.

4.4. RMSE Results

The RMSE task results presented in table 11 are not
encouraging. The deep network results were all very
poor and the gated results only rarely beat the base-
line. The multiple regression results were nearly uni-
form which means that the effect of the extra features
and the decompositions was minimal. The final lift
obtained is far too small to be detectable by a user
of such a system. The inescapable conclusion is that
we failed to achieve a significant improvement in the
RMSE task.

Unlike the AUC task, final blending was ineffectual on
the RMSE task: the score of the blended result was
slightly worse than the best individual result13. This
is probably due to there not being enough diversity in

12How is a computer to know that this was the favourite
film of a hated ex and is thus terrible by association?

13The submitted results were still the blended ones, how-
ever, as they should be more resistant to the selection bias
in the validation set
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Table 11. RMSE Blending Results. The lift is 1000 times the improvement over the baseline score. The weight values,
which describe the blending weight in the final model, are reported as mean ± standard deviation.

Task Small Medium Large

Model RMSE Lift Weight RMSE Lift Weight RMSE Lift Weight

dn1 0.4422 -2.4 0.02±0.01 0.4332 -2.5 0.04±0.02 0.4442 -2.3 -0.06±0.03
dn2 0.4485 -8.7 0.02±0.03 0.4407 -10.0 0.03±0.02 0.4495 -7.6 -0.02±0.04
dn3 0.4486 -8.8 0.02±0.04 0.4409 -10.2 0.03±0.03 0.4497 -7.8 0.02±0.07
dn4 0.4421 -2.3 0.02±0.01 0.4332 -2.5 0.03±0.02 0.4442 -2.3 -0.06±0.04

gated 0.4500 -10.2 0.07±0.04 0.4462 -15.5 0.02±0.04 0.4418 0.1 0.09±0.04
gated2 0.4409 -1.1 0.08±0.04 0.4315 -0.8 0.07±0.04 0.4414 0.5 0.09±0.04
gated3 0.4554 -15.6 -0.04±0.03 0.4420 -11.3 0.02±0.04 0.4428 -0.9 0.05±0.04
gated4 0.4490 -9.2 0.03±0.03 0.4393 -8.6 0.00±0.03 0.4419 0.0 0.04±0.05
gated5 0.4620 -22.2 0.03±0.03 0.4487 -18.0 -0.04±0.04 0.4460 -4.1 0.01±0.02
gated6 0.4421 -2.3 0.03±0.04 0.4317 -1.0 0.03±0.04 0.4421 -0.2 0.02±0.05
gated7 0.4394 0.4 0.04±0.02 0.4295 1.2 0.04±0.03 0.4405 1.4 -0.05±0.10

mr1 0.4379 1.9 0.07±0.02 0.4277 3.0 0.10±0.02 0.4386 3.3 0.13±0.04
mr2 0.4377 2.1 0.08±0.01 0.4275 3.2 0.10±0.04 0.4387 3.2 0.10±0.02
mr3 0.4377 2.1 0.07±0.02 0.4276 3.1 0.09±0.03 0.4386 3.3 0.11±0.03
mr4 0.4382 1.6 0.06±0.03 0.4278 2.9 0.08±0.03 0.4386 3.3 0.10±0.06
mr5 0.4379 1.9 0.06±0.02 0.4277 3.0 0.08±0.04 0.4386 3.3 0.10±0.06
mr6 0.4379 1.9 0.07±0.02 0.4277 3.0 0.09±0.03 0.4386 3.3 0.11±0.02
mr7 0.4377 2.1 0.07±0.02 0.4278 2.9 0.06±0.04 0.4385 3.4 0.15±0.09
mr8 0.4377 2.1 0.07±0.02 0.4275 3.2 0.10±0.04 0.4389 3.0 0.07±0.02
mr9 0.4379 1.9 0.06±0.01 0.4278 2.9 0.05±0.05 0.4389 3.0 0.05±0.03

mclass 0.4398 0.0 0.06±0.05 0.4319 -1.2 0.02±0.03 0.4417 0.2 -0.00±0.04
rtrees 0.4411 -1.3 0.05±0.05 0.4321 -1.4 0.02±0.04 0.4427 -0.8 -0.05±0.05

combined 0.4381 1.7 0.4277 3.0 0.4385 3.4

the models blended: there were only a few really dis-
tinct models with reasonable performance, and these
frequently used the same features (from the DNAE,
the SVD and the derived features).

4.4.1. Criticism of quadratic metrics on noisy
data

This phenomena is probably explained by the use of
a RMSE metric, and the amount of noise in the data.
The RMSE metric penalises very heavily incorrect pre-
dictions at the extreme ends of the scale: a prediction
of 1 has 4 times the potential MSE error (16 points)
than a prediction of 3 (4 points). As the noise in the
data increases, it becomes more and more costly to
deviate significantly from the 3 prediction.

Assuming that random noise is added equally to each
label, label 1 already becomes difficult to predict. If
we also consider that label 1 would most likely be used
by people for emotional reactions to films (likely, some
proportion of the 1 ratings are due to vitriol), they
become even more difficult to model.

Row Breakdown It is instructive to break the
dataset into different types of rows, based upon the

ease with which a prediction can be made:

• easy : all models are within one star of the correct
answer;

• possible: at least one model is within one star of
the correct answer;

• impossible: no model is within one star of the
correct answer14.

Table 12 shows the result of this breakdown on the
large RMSE dataset, and the contribution of the differ-
ent row types to the total MSE for the baseline model.
Considering that it is very unlikely that any improve-
ment could be made on these positions, it is still very
important to pick a good middle value for them, as
they account for 1/3 of the error.

The upshot is that it is nearly impossible to make
progress on the RMSE metric, as the noise on the out-
liers is amplified significantly by the RMSE metric. It

14It is could happen that the impossible values be clus-
tered on both sides of the correct answer and that their
mean be a good predictor, but this was not observed in
the data.
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Table 12. Large RMSE training set broken down by row
difficulty. In the last column, we see that 1/3 of the MSE
comes from the impossible positions, which account for just
5.7% of the data.

Category Freq Avg MSE Total MSE

Easy 0.329 0.019 0.0063
Possible 0.614 0.198 0.1216
Impossible 0.057 1.189 0.0678

Total 1.000 0.195 0.1953

would be more useful to either a) use a linear metric
such as the mean error, or b) remove the impossible
entries from the evaluation dataset.

4.5. Cracking Open the Black Box

There is absolutely zero side-channel information ob-
tainable for this task15. Even information that could
normally be used to determine the accuracy of the un-
derlying models (such as the amount of information
about the given movie and user in the training data)
was not available. This information would be useful to
the blender, and it is worth considering how it could
be provided.

In addition, every model made a prediction for every
data point, irregardless of whether or not that predic-
tion was likely to be useful. In other words, the models
were designed to maximise recall.

The author’s previous work on ensembling in compu-
tational linguistics has shown that this strategy is sub-
optimal: precision is far more important than recall,
and it is better for a model to be highly accurate on
a tiny subset of reliably identified examples than be
mediocre on many.

One way to allow for a precision/recall trade-off to be
made is for models to provide both a prediction and a
confidence in that prediction. The confidence gives the
probability that the prediction is correct (for example,
the probability that the output of the model is within
one star of the correct rating). The blender can then
improve the precision of a given model by thresholding
on this confidence value.

The features provided by each model for the confi-
dence function need to provide information about the
failure modes of the algorithm. For example, a statis-
tical model might perform poorly when there is little
data available about the user; in this case, the amount

15Contrast with the Netflix Prize where the identities of
the films were known, which allowed the possibility to ob-
tain further information about the film from the Internet.

Figure 4. Ensembling with confidence information.
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of data available would be provided to the confidence
classifier. An iterative algorithm would provide the
number of iterations required to reach convergance,
and so on. There is not necessarily more work to cre-
ate a (model, confidence function) pair like this: the
algorithm is allowed to make really bad predictions, so
long as its confidence function can predict them. Algo-
rithms can become more focused on modelling exactly
one phenomenon, instead of the Swiss Army Knife that
is necessary when no confidence is provided. If the se-
lection of algorithms is significantly diverse, it will be
possible to predict most examples using mostly infor-
mation from accurate models for that example.

Figure 4 shows one way to implement such a scheme
using a gating function. The confidence classifiers
could either be part of the black box, trained exter-
nally from the features, or learnt implicitly as part of
the gating function (which would receive only the fea-
tures).

4.6. Deep Networks

The final submission for the small AUC task that is
presented in table 10 is not in fact the best results
that were obtained for this task. During develop-
ment of the denoising auto-encoders, an initial auto-
encoder was produced that, when trained into a deep
network using supervised back-propagation, produced
results significantly better than these. However, due
to numerical issues and thread-order non-determinism,
these results could not be duplicated nor even closely
matched. There are two possible explanations. The
first is that, in speeding up the code to run at an
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acceptable speed for the large task, an error was in-
troduced (nearly 2,000 lines of test cases that tested
a lot of the invariants in the system). The second is
that these methods are very sensitive and one needs
to train many models to fall on a good one16.

A large amount of effort was also expended to improve
the speed of back-propagation, which was were most
of the time was spent in training the denoising auto-
encoders and deep network models. The second-order
methods indicated in (LeCun et al., 1998) were imple-
mented; however they tended to be over-enthusiastic
about the learning rate, leading to divergence or os-
cillation. Even the simpler methods to generate an
overall learning rate failed, and it was necessary to fall
back onto manual tuning of parameters.

Perhaps the most important conclusion is that these
models are difficult to get right in practise, and would
require much experience to use successfully: especially
when moved out of the image domain (where most of
the successful work has come from) where it is simple
to visualise what has been learnt and verify that the
models make sense.

5. Conclusion

The AUC task proved to be rich and enjoyable, and
a significant improvement was obtained on this task,
especially on the medium and large datasets. Models
based upon gating of the input models and multiple re-
gressions were successfully used. Further improvement
was achieved by hand-coding features.

The use of unsupervised decompositions to model
the joint distribution of the input variables led to
some success. Both a linear SVD decomposition
and non-linear denoising auto-encoder decompositions
were tried. The denoising auto-encoder decomposi-
tions however did not end up providing good pre-
initialisation for deep neural networks, except for on
one model which could not be reproduced. These mod-
els appear to be difficult to use well and more experi-
ence would have been necessary to use them effectively.

No significant improvements were made on the RMSE
task, due to the interplay of a skewed dataset, the pres-
ence of noise and the quadratic nature of the RMSE
metric. A less severe metric should be adopted or noise
removed from the dataset. Judging from the leader

16Of course, one can make one’s own luck. This is why
practitioners of deep networks suggest to make them both
wide and deep: for each useful generalisation, there is likely
to be a neuron somewhere within a wide enough network
that will learn it. Unfortunately, the computational re-
sources were not available to train significantly wider net-
works than the ones described here.

board on the small task, it is unlikely that any team
managed to achieve a significant improvement over the
baseline.

An improved model of ensembling was proposed,
whereby each model in the ensemble provides not only
a prediction of the target function, but a list of features
that can be used to determine when the model is likely
to be inaccurate. This model requires further work on
the part of the ensemble builders to provide this in-
formation, but would allow the ensembling method to
have significantly more leverage.
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Combining Experts by Modeling and Boosting
Score Characteristics

Team ADM1: Tom Au, Rong Duan,
Guangqin Ma, and Rensheng Wang

AT&T Labs, Inc.-Research, USA

Abstract. Based on the same information, subjects are classified into
two categories by many experts, independently. The overall accuracy of
prediction differs from expert to expert. Most of the time, the overall
accuracy can be improved by taking the vote of the experts committee,
say by simply averaging the ratings of the experts.

More sophistic softwares and models may be created trying to en-
semble the experts ratings and produce a better overall predictive accu-
racy (i.e., higher AUC), but often they are not apparent to users.

In this exercise, we propose a method to summarize the subject-
wise characteristics of experts scores and combine them with experts’
rating to boost the overall predictive accuracy. The advantages of this
approach are less computing intensive, easy to implement and apparent
to user, and most of all, it produces much better result than the simple
averaging, say.

For an application with a base consists of hundreds of millions of
subjects, 1% improvement in predictive accuracy will mean a lot. Our
method which requires less efforts and resources will be one more plus
to practitioners.

Key words: Score Characteristics, LogitBoost

1 Data Structure

We consider the following data structure

{(Yi, fi,1, fi,2, ...fi,m), i = 1, 2, 3, ..., n}

where Yi = 1 or 0 indicating the category that subject i belongs to or not, n is
the number of subjects, fi,j is the rating score assigned to subject i by expert j,
j = 1, 2, ...,m. Without loss of generality, we assume that Y = 1 associates with
higher rating scores.

2 Invariant Property of ROC Curve

The performance of a classifier is measured by its ROC curve. Two classifiers
have different ROC curves not because they have different values, but because
they have different ranking of subjects under study. Therefore, the ROC curve is
invariant under a monotone transformation of the decision variables (i.e., fi,j),
for given j.
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3 Ranks for Classifiers and Its Characteristics

For classifier j, we sort {fi,j , i = 1, 2, ..., n} in ascending order, let {ri,j , i =
1, 2, ..., n} be the corresponding percentage rank scores (0 ≤ ri,j ≤ 1).

Based on the rank scores {ri,j , i = 1, 2, ..., n}, we created the following vari-
ables:

The Blom [1] normal rank scores

xi,j = Φ−1((n ∗ ri,j −
3
8

)/(n+
1
4

)), i = 1, 2, ..., n,

where Φ() is the cumulative standard normal distribution function. Based on the
invariant argument, the ROC curves based on fi,j , ri,j and xi,j are the same for
a given expert j.

If subject i’s true status is Yi = 1, then we would expect that majority of
the experts will assign higer ranking scores to the subject, and vise versa.

The characteristics of the score distribution of {ri,j , j = 1, 2, ...,m} for in-
dividual i is characterized by the shape parameters (αi, βi) of beta distribution
beta(αi, βi) fitted to the percentage scores. When αi < βi, the distribution of
the scores is skewed to the left(in the sense that smaller values become more
likely); when αi > βi, the distribution of the scores is skewed to the right; when
αi = βi the score distribution is symmetric about 0.5.

A 3-mean cluster analysis based on the Blom rank scores are performed and
we find that these clusters are well captured by the beta shape parameters, see
Figure 1 to Figure 3, they displayed how these characteristics associated with
individual subjects true status.

Other characteristics of the percentage scores based on beta(αi, βj) are the
mean (αi/(αi + βi)), mode ((αi − 1)/(αi + βi − 2), αi, βi > 1) and variance
((αiβi/(αi + βi)2(αi + βi + 1))

To further summarize the characteristics of the score distribution for subject
i, we created 21 quantiles of {ri,j , j = 1, 2, ...,m}: qi,1, qi,2, ..., qi,21. Quantile qi,1
and quantile qi,21 are the 1 and 99 percentiles, respectively; the other quantiles
are 5% apart starting with qi,2 being the 5th percentile. Figure 4 shows rank
scores based on raw data and their three quartiles.

Last, we created all the descriptive statistics based on xi,j , j = 1, 2, ...,m,
for subject i. These descriptive statistics include mean, variance, max, min,
range, IQR, skewness and kurtosis; in addition, the entropy measure based on
normalized percentage rank scores for each subject.

4 Regression and Boosting

So far, for each suject, we have created Blom normal scores, characteristics of
scores based on beta distribution, quantiles and descriptives statistics of scores
based on the m experts rating.

Our next step is to use these created rank scores and characteristics as ex-
planatory variables (X) to perform a LogitBoost [2]. At the regression stage
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a backward selection is used. More precisely, let 1
2 ligit

(
P (Y = 1|X)

)
= F (X),

where F (X) is a linear combination of explanatory variables. Then we start with

1: Assign each individual X with the same weight w(X) = 1
N , N is the number

of observation in the data, F (X) = 0 and P (Y = 1|X) = 1
2 ;

2: Repeat from m = 1, 2, ...,M :
– (a) Compute the working response and weights

fm(X) =
Y − P (Y = 1|X)

P (Y = 1|X)
(
1− P (Y = 1|X)

) ,
w(X) = P (Y = 1|X)

(
1− P (Y = 1|X)

)
;

– (b)Fit the function fm(X) by weighted least-squares regression to X using
weights w(X) and backward selection;
– (c) Update F (X)← F (X)+ 1

2fm(X) and P (Y = 1|X)← eF (X)/
(
eF (X) +

e−F (X)
)
;

3: Output F (X) =
∑M

m=1 fm(X) and P (Y = 1|X)← eF (X)/
(
eF (X) +e−F (X)

)
.

5 Model Assembly

We set out to build four nested models and hope each model will capture some
aspects of the subjects’ true status:

– Model 1: The Blom’s Rank Scores and the 21 percentiles;
– Model 2: Model 1 + the descriptive statistics (mean, stdev, skewness, kur-

tosis, min, max, IQR and Range);
– Model 3: Model 2 + the fitted beta parameters;
– Model 4: Model 3 + other fitted beta parameters such as the mode, mean

and variance of the fitted beta density.

Initially, we split the training data randomly into 50/50 training and testing
samples. We then use the testing sample to validate the result at each iteration.
The testing yields the highest AUCs between the third and the seventh iterations.
Therefore, we used the average scores of these models from iterations 3 to 7 as
final result for each model. Instead of using simple average of all these four final
results, we searched the best weights for the weighted average of these four final
results.
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Fig. 1. Scatter plot of {(αi, βi), i = 1, 2, ..., n},red and black crosses indicating Y=1
and Y=-1, respectively.

Fig. 2. Scatter plot of {(αi, βi), i = 1, 2, ..., n} by clusters based on rank scores.
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Fig. 3. Percentage rank score distributions based on the small training data set for
ROWIDs =4727, 6251, 6870 and 1289. The scores are shown in histograms and the
continuous curves are fitted beta densities.

Fig. 4. Blom rank scores (black dots), quartiles (red lines) and the average of 10 best
classifiers (yellow dots).



 Team Name : Latentview 

Team Members: C. Balakarmekan, R. Boobesh 

 

Abstract: 

Method – AUC: 

In order  to ensemble the scores, we generated 50 random samples from the population and built 

stepwise logistic model with the random sample of variables in the single logistic model using log-link 

function. The scores were combined by averaging the scores.  

Method - RMSE: 

 Decision tree technique was used to built model using treenet tool.  

 We built CART models to predict the target variables using the model scores 

 Ensemble of the results from the above two techniques was done to arrive at the final scores. 

 



Kranf Team 

All the models were created using in a straight forward fashion, the «Elastic Net »1 linear regression 

technique 𝑋𝛽 = 𝑌 where X is the learning dataset, 𝛽 is the “predictive model” and 𝑌is the “target to 

predict”. 

This technique is from the type of “penalized” regression techniques where there are two 

regularization parameters: 𝛼 and 𝛾. The loss function to optimize is: 

𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝛽) = 𝑠𝑞𝑢𝑎𝑟𝑒_𝑜𝑓_𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙_𝑒𝑟𝑟𝑜𝑟(𝛽) +  𝛼 𝛽 1 + 𝛾 𝛽 2 

The parameters  𝛼 and 𝛾 were estimated using a 6-fold-cross-validation technique. 

For the binary prediction model, I used, as a target, 𝑌 =0 or 1 

For the continuous prediction model, I used, as a target, 𝑌 =1000,2000,3000,4000 or 5000. 

Reference 

1. "Regularization and variable selection via the elastic net", Hui Zou and Trevor Hastie, J.R. 

Statist. Soc. B (2005) 67, Part 2, pp. 301-320 
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Abstract

This paper describes our solution to the AusDM2009 Analytic Challenge. The challenge is to find an
effective strategy for combining the outputs of a set of experts so that a performance measure is optimized.
Accordingly, we proposed an effective way of selecting subsets of experts and then simply aggregated their
outputs. Additionally, we further combined the outputs obtained from the multiple selection of subsets, that
is, adopting an ensemble-of-ensembles approach. For the expert selection process we considered the geo-
metric version of particle swarm optimization (PSO) for Hamming spaces. This formulation allows us to
effectively explore the search space by creating new solutions as convex combinations of previous ones; we
also included a mutation term into the PSO algorithm. For merging the outputs of experts (resp. ensembles)
we simply took the average of their outputs. Despite being simple, our approach has obtained very promis-
ing results in the small data sets for both tracks of the challenge. Our results are encouraging and motivate
further research and applications for the proposed technique.

Team name: hugojair; Team member: Hugo Jair Escalante.

1 Introduction

This paper describes the participation of my team at the AusDM2009 analytic challenge. The considered
scenario is as follows. We are given the response of a set of N experts for T instances of particular problem
and we want to determine what experts to use and how to combine their output such that the performance
in the specific problem is maximized [1]. Clearly, there are (at least) two aspects that may have an impact
on the performance of methods that face this task: 1) selecting the experts that are to be combined; 2)
determining the way in which the outputs of the selected experts will be combined. Our approach to the
AusDM2009 analytic challenge, depicted in Figure 1, attempts to have a positive impact on both of these
aspects.

On the one hand, we propose the application of particle swarm optimization (PSO) for the selection of
the experts that are to be combined. Specifically, we developed a modified version of the geometric PSO
algorithm (GPSO) for Hamming spaces [5]. The fitness function of the GPSO algorithm minimizes the

1



evaluation metrics that are evaluated in the challenge (i.e. the gini coefficient, GINI, and the root-mean-
square error, RMSE), see [1] for details. Our implementation allows us to influence the number of experts
that are to selected, which may be important for reducing the dimensionality of the problem according
to the available resources. Once that a set of experts is selected we merge their output by using a rather
simple strategies, namely, averaging the expert’s outputs (for minimizing the RMSE) and building a binary
classification models (for minimizing 1-GINI).

On the other hand, we propose the combination of the outputs of multiple selections of experts (see
Figure 1), in what we called the ensemble-of-ensembles (or the meta-ensembles) approach. The intuition
behind this formulation is that whereas the combination of a single selection of experts may be biased
(because of the initialization of GPSO or because of a local minima) the average over multiple selections
of experts is a more robust strategy. Our preliminary results, as reported in the AusDM2009 challenge
leaderboard [1], in the SMALL data set are encouraging and motivate further research and applications
for the proposed technique. The rest of this document briefly describes our approach. Notice that the
methodology described in this working note will be described in detail in a forthcoming publication [3].

Figure 1. Diagram of the methodology we adopted for the AusDM2009 challenge.

2 Geometric PSO

PSO is a bio-inspired search technique that has shown outstanding performance in a wide variety of
domains [2]. In PSO, the solutions to the problem at hand are called particles and the population of
M−solutions is known as the swarm; at time t each particle i has a position xt

i ∈ Rd, with d the dimen-
sionality of the problem, in the search space. The aptitude of solutions is evaluated by a fitness function,
which returns for each particle a scalar value indicated how far the corresponding particle is from the opti-
mal solution. The PSO algorithm (as well as the GPSO version) proceeds as follows. At the beginning of
the optimization process the solutions (i.e. particles’ positions) are initialized randomly and their aptitude
is evaluated, then the following iterative process starts: based on previous solutions and on the fitness of
that solutions, particles’ positions are updated (i.e. new solutions are generated); next, the fitness of the new
particles’ positions are evaluated and the process is repeated for a fixed number of iterations. The way in
which new positions are generated indicates how the search space is to be explored.

For expert selection (resp. feature selection) each solution xt
i is coded as a binary vector (i.e. xt

i ∈
{0, 1}N ) with length (N ) equal to the number of experts (resp. features) available; the values of this vector
indicate the presence or absence of a specific expert (resp. feature) in the current solution. In its original
form, PSO was defined for working in Euclidean spaces. For problems in Hamming spaces the continuous
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version of PSO is adapted for such problems [4, 5], e.g. by considering scaling functions that map real
numbers into the [0, 1] interval and using a threshold to determine if the value is either 0 or 1. The latter
formulation, however, presents a number of limitations that make it not suitable for the problem (e.g. how
to define the threshold).

GPSO is an equivalent formulation for PSO in which the representation of solutions does not need to be
adapted. Instead, GPSO provides a mathematical generalization of the notion (and motion) of particles for
a general class of spaces, see Moraglio et al. for details [5]. In GPSO positions are updated as follows:

xt+1
i = (1− φ1 − φ2)× xt

i + φ1 × pi + φ2 × g (1)

where xt+1
i is the new position for a particle i, xt

i is the current position for particle i, pi is the best solution
found by particle i at time t, g is the best particle found so far in the swarm and φ1 ≥ 0, φ2 ≥ 0, φ1+φ2 < 1.
This means that the new position for a particle is a convex linear combination of its previous position, the
best position found by the particle and the best solution found by any particle in the swarm, regardless of the
space in which the solutions lie. For expert selection we consider the GPSO version for Hamming spaces
as described in [5]. In the rest of this section we describe the fitness function we used for minimizing the
RMSE and for maximizing the GINI coefficient for the two tasks in the AusDM2009 challenge.

2.1 GPSO for RMSE

For each particle i, letEi = {j : xt
i,j = 1} (i.e. each j is an expert index, j ∈ {1, . . . , N}); letN i

E = |Ei|
and consider the matrix XE

i formed by concatenating the outputs of the N i
E selected experts Ei; under these

settings, the fitness function of GPSO for a particle xt
i with the goal of minimizing the RMSE is given by:

f(xt
i) =

√√√√ 1
T

T∑
k=1

(ok − avg(XE
k ))2 +

(
λ× q(N i

E , Nmax)
)

(2)

with avg(XE
k ) = 1

N i
E

∑N i
E

j=1 XE
k,j is the average of the N i

E experts for the instance k; ok is the ground-truth
label of instance k; Nmax is the maximum number of experts that we want to consider and where:

q(N i
E , Nmax) =

{
log(N i

E −Nmax + 1) if N i
E > Nmax

0 otherwise
(3)

The first term in Equation (2) is just the RMSE obtained by combining (via simple average) the outputs
of the considered experts. The second term in Equation (2) penalizes the incorporation of more than Nmax

experts in the current solution, the scalar λ weights the importance of the latter term.

2.2 GPSO for AUC

Similarly, the the fitness function of GPSO for a particle xt
i with the goal of maximizing the GINI coeffi-

cient is given by:

f(xt
i) =

(
1− 2. ∗ (gauc(b(XE , o), o))− 0.5)

)
+
(
λ× q(N i

E , Nmax)
)

(4)

where λ, and q(N i
E , Nmax) as above and with b(XE , o) being the output of a binary classifier (for efficiency

we considered a Naı̈ve Bayes classifier) that uses as training set to the outputs of the N i
E experts (as training
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patterns) and the ground-truth outputs for the instances (as outputs of the training patters); gauc(avg(XE), o)
is a function that computes the area under the ROC curve for the predictions of b(XE , o) given the ground-
truth outputs o. The minimization of Equation (4) is equivalent to maximizing the GINI coefficient. The
first term in Equation (4) is just the GINI coefficient for the a classifier trained on the outputs of the experts;
whereas the second term (defined as above) accounts for the number of experts considered in the solution.

3 Meta-ensembles

For each task (i.e. RMSE or GINI) we applied the GPSO implementation outlined in Section 2 multiple
times, using different initializations each time, selecting different subsets of experts. For each of the resultant
sets of experts we kept the output generated by combining the outputs of the corresponding experts as
follows. For the RMSE task, we kept the result of fitting a linear regression model (using the least squares
method) by using the outputs of the selected experts and the ground-truth outputs from the training set. For
the GINI task, we build a binary classifier (using a more effective classification method than that used for
computing the fitness function in Equation (4)) using the outputs of the selected experts and the ground-truth
outputs from the training set.

As a result of the latter process, we obtain multiple outputs (generated by the combination of the outputs
of experts) which we just simple average to generate a final output for the corresponding task. This setting,
that we called the meta-ensembles approach, aims at obtaining more robust estimators than when the output
of a single combination of features is used. In preliminary experimentation we found that satisfactory results
were obtained with our methodology.

4 Parameter settings

The methodology described in this document, requires the specification of several parameters, includ-
ing the number of iterations of GPSO, the number of particles for the swarm, the mutation probabilities
(see [5]), λ, Nmax, the learning algorithm for building the classifiers for the GINI task, etcetera. For our
submissions to the challenge we set this parameters by trial and error using as evaluation measure to the
score provided by the organizers through the leaderboard [1]. We would like to emphasize that our approach
to the AusDM2009 analytic challenge will be properly described in detail in a forthcoming publication [3],
the code implementing our approach will be publicly available from http://ccc.inaoep.mx/∼hugojair.

References

[1] P. Brierley. Website of the AusDM analytic challenge. http://www.tiberius.biz/ausdm09/, 2009.

[2] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley, 2006.

[3] Hugo Jair Escalante. Geometric particle swarm optimization and meta-ensembles for output aggregation and
feature selection. In Preparation, 2009.

[4] J. Kennedy and R. C. Eberhart. A discrete binary version of the particle swarm algorithm. In IEEE, 1997.

[5] A. Moraglio, C. Di Chio, and R. Poli. Geometric particle swarm optimisation. In M. Ebner et al., editor, Proceed-
ings of EuroGP’07, volume 4445 of LNCS, pages 125–136. Springer, 2007.

4



Team name :      tkstks

Member name :  tsukasa moritoki

Method :
                                          Small  Medium

  RMSE : Random SubSpace[LInear Regression]
      # models : 50-80
      iteration  : 20-40

  AUC :   Random SubSpace[Logistic Regression]
      # models : 100-150
      iteration  :  30-50

                                                     Large

RMSE : RSS[LIR](m1)   Ensemble Selection(m1)
        m1 : 100 LInear Regression models from randomly 
                  selected 70-80 base models
    

 AUC : RSS[LR](m2)   Ensemble Selection(m2)
        m2 : 100 Logistic Regression models from randomly 
                  selected 150 base models

    

Software :
                  R ,  RapidMiner ,  Weka 



From the team axct with warm regards: 

Used some mild modifications of the recommended R-code: LM function was used 

for RMSE and GLM function was used for AUC. 

 

 

ensemblerContinuous(num=100,rowpercent=0.99,colpercent=0.5,df_train=trainset

,df_test=testset,mytarget=Target,fname= "c:/mydata/file.csv") 

 

where 

 

ensemblerContinuous <- 

function(num,rowpercent,colpercent,df_train,df_test,mytarget,fname) 

{ 

mytarget <- deparse(substitute(mytarget)) 

ensemble_lr <- 0 

colprob <- array(dim=NCOL(df_train)) 

colprob[] <- colpercent 

colprob[which(names(df_train)==mytarget)] <- 0 

for(i in 1:num) 

{ 

cat(i, " of ", num) 

print("") 

flush.console()  

rows <-sample(NROW(df_train), NROW(df_train) * rowpercent) 

cols <- sample(ncol(df_train),ncol(df_train) * colpercent, prob = colprob) 

cols <- c(which(names(df_train)==mytarget), cols)  

subpop <- df_train[rows,cols] 

model_lr <- lm(as.formula(paste(mytarget, " ~ . ")) , data=subpop) 

scores_lr <- predict(model_lr, df_test) 

scores_lr <- ifelse(scores_lr > 5000, 5000, scores_lr) 

scores_lr <- ifelse(scores_lr < 1000, 1000, scores_lr) 

ensemble_lr <- scores_lr + ensemble_lr 

} 

ensemble_lr <- ensemble_lr / num 

write.table(as.numeric(as.character(ensemble_lr)), file=fname,col.names=FALSE, 

row.names=FALSE, sep=",") 

} 



AusDM 2009 

Analytic Challenge 

Team: BusinessResearch 

Country: Russia 

City: Saint-Petersburg 

Members: 

Evgeny Antipov (“Evgeny Antipov’s Center for Business Analysis”, 

President; “Comcon Research Company”, Lead analyst; State University - 

Higher School of Economics, MS student) 

Elena Pokryshevskaya (“Evgeny Antipov’s Center for Business Analysis”, 

Lead project manager; State University - Higher School of Economics, MS 

student) 

Dataset analyzed: M_RMSE, L_RMSE 

Approach: MLP ensemble after stepwise selection procedure 

1. Select predictors based on stepwise regression procedure with 

PIN=0.05, POUT=0.05 (for L_RMSE PIN=0.01, POUT=0.01). This 

approach is not as computationally intensive as best subset search, but 

works almost as well, if we look at adjusted R2 values (only slightly smaller 

than R2). At each step, the independent variable not in the equation that 

has the smallest probability of F is entered, if that probability is sufficiently 

small. Variables already in the regression equation are removed if their 

probability of F becomes sufficiently large. The method terminates when no 

more variables are eligible for inclusion or removal. 

2. Build neural networks using the set of variables selected at Step 1 

(for M_RMSE – 31 predictors). We recommend using the following input 

information:  

Training sample =70% 

Test sample=20% 

Validation sample=10% 

 

http://www.tiberius.biz/ausdm09/index.html


MLP: 

Min hidden units=7 

Max hidden units=23 

(for L_RMSE Min hidden units=8 Max hidden units=26) 

 

Networks to train: 20 

Networks to retain: 5 

 

Error function: Sum of squares 

3. Take the average of 5 best models and recode values greater than 

5000 to 5000 and those less than 1000 to 1000. 

 



Methodology: 

Our methodology finds out the best top predictors from training sets using Hill Climbing 

Approach and we implement those top predictors in the score (test) sets for deriving mean 

values or results.  

Our approach of Hill Climbing uses the following steps to find the best model predictors 

from the Training Set data: 

1. Finding the Individual RMSE value of every predictor and sorting them out on the 

basis of ascending order of RMSE value. Then we select the best top 10 model 

predictors. 

2. Starting with every predictor not in the top 10 predictor list, temporarily replace the 

top predictor by it, and then calculate the new RMSE. We compare this new RMSE 

value with the one calculated in the step 2. If the new RMSE is greater than the 

RMSE calculated in step 2 then we stop the replacement for that non top predictor. 

Otherwise, the replacement takes place. 

3. Re-arranging the new top 10 predictors after the replacement process.  

4. Repeating the steps 2 and 3 for all other remaining non-top predictors. Stop when 

there is no replacement candidate. 

5. After the end of iteration, selecting the newly generated top 10 best predictors  

After getting the best top 10 model predictors from the training data after the 

replacement process, we use those model predictors with the Medium Score Data to 

calculate the mean of those top 10 predictors which is the final result of our 

methodology. 

Team Members: 
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Mr. Suresh Raj Bhattarai 
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Introduction

AusDM  2009  Analytic  Challenge  was  aimed  at  creating  an  ensembling  method  for

improving  the  predictive  accuracy  of  different  algorithms  based  on  1,000  sets  of

predictions. This problem is made simpler as a model-aggregation problem where the

goal  is  to  combine  results  of  two  predictive  models  according  to  a  predetermined

evaluation function.

In this paper our novel intuitive approaches are proposed in order to enrich statistical

matching method based datasets and thus increase available predictions.

Our solution

The  CRISP-DM data mining methodology is used in the below solution, therefore the

number of possibilities have been tried and rejected due to its nature. 

The final solution consists of the following steps:

• creating transformed and enriched datasets;

• modelling by subproblems and by datasets;

• ensembling the predictions of above models.

Datasets

Available datasets were considerably noisy  and  there were no confidence values for

predictions  so  the preprocessing  of  datasets  were  regarded important.  There  are  2

small, 2 large and 2 medium data sets for training and testing.  In the training phase of

the final solution , the following datasets were used: 

• Original  datasets supplemented  an  average  variable  based  on  all  other

predictions

• Distribution-based datasets
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o Firstly from each of the six datasets was selected the 100 most accurate

models.

o Thereafter, we sorted predictions of each models: the highest value of a

given row was the first input field, the lowest in the last field. Thus the

predictions of different models were in the same position of given rows.

In this way we lost a lot of information (the error of models based on

this  dataset  was  greater)  but  these  models  can  be  learned  other

characteristics of datasets. So the models based on this dataset proved

to be effective in the combination of predictions.

o In case of AUC type datasets,  the target attributes were appreciated

based on distribution of input variables. 

o The original six training datasets were transformed to one large uniform

dataset with 100 input attributes.

• Datasets based on statistical matching for variables

o We tried to find the connection between the attributes of the different

datasets.  First of all,  we computed the empirical distribution function

(conditional and marginal) for the attributes.

o Then we calculated the distance between the distribution functions in

different norms (sup, L1, L2) for each pair.

o We generated random weights for the differences and chose the best

30. Then we  searched the closest pairs of attributes. 

o Finally we accepted that two attributes are the same (or very similar)  if

they were supported by enough weight vector and the second closest

attribute was   far enough. 

Modelling

By evaluation and comparison of the models, a cross-validation framework was created.

The cross-validation random sample was carried out repeatedly, while it was possible to

tell exactly which the most effective model combination method for each subproblem is.

For  the  sake  of  enriched  datasets  our  model  combination  methods  used  more

predictions but in the validation step the original set of records were selected (typically

25% of the original dataset).

On the training dataset more than 17 different models have been tried, but the final

solution contained only the following:

• linear regression with different variable selection methods
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o enter

o backward

o forward

o stepwise

• Generalized linear models

• Feedforward neural networks

According to cross validation results, the following models were used in our final

solutions.  

Task on dataset M_RMSE_Score

Dataset Model Performance based on

crossvalidation (RMSE)

Distribution-based datasets Regression – Enter mode 871.3

Distribution-based datasets Regression – Backward mode 871.1

Distribution-based datasets Regression – Forward mode 871.3

Distribution-based datasets Regression – Stepwise mode 871.4

Statistical Matching on

L_RMSE_Train and M_RMSE_Train 

Regression – Enter mode 869.8

Statistical Matching on

L_RMSE_Train and M_RMSE_Train

Regression – Backward mode 869.8

Statistical Matching on

L_RMSE_Train and M_RMSE_Train

Regression – Forward mode 869.8

Statistical Matching on

L_RMSE_Train and M_RMSE_Train

Regression – Stepwise mode 868.7

Statistical Matching on

L_RMSE_Train and M_RMSE_Train

Neural network (topology: two

hidden layer with 20 and 16

nodes

867.3

Statistical Matching on

L_RMSE_Train and M_RMSE_Train

Generalized Linear Regression 869.4

Ensamble method: average

(final solution)

867.11
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Task on dataset L_AUC_Score

Dataset Model Performance based on

cross-validation (Gini)

Distribution-based datasets Generalized Linear Regression –

rating prediction

0.6642

Statistical Matching on

L_RMSE_Train and L_AUC_Train

Regression – Backward mode 0.6683

Statistical Matching on

L_RMSE_Train and L_AUC_Train

Neural network (topology: two

hidden layer with 20 and 16

nodes

0.6614

Statistical Matching on

L_RMSE_Train and L_AUC_Train

Generalized Linear Regression 0.6685

Ensamble method: average

(final solution)

0.6711

References

[1] McCullagh, Peter, and Nelder, John (1989).  Generalized Linear Models, Second
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[2] Nelder,  John  and  Wedderburn,  Robert  (1972).  Generalized  Linear  Models.
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Background:

The goal of the AusDM 2009 challenge was to encourage the discovery of  new algorithms for 
ensembling or 'blending' sets of expert predictions. Ensembling is the process of combining multiple 
sets of expert predictions so as to result in a single prediction of higher accuracy than those of any of 
the individual experts. From previous data mining competitions such as the Netflix Prize, it has become 
apparent that for many predictive analytics problems, the best approach for maximizing prediction 
accuracy is to generate a large number of individual predictions using different algorithms and/or data, 
and ensembling these sub-results for a final prediction.

The AusDM 2009 challenge organizers provided sets of predictions obtained from the two leading 
teams in the Netflix Prize competition; Belkor's Pragmatic Chaos, and The Ensemble. For the RMSE 
portion of the challenge, three data sets were provided, a small set with 30,000 sets of predictions from 
200 experts (different algorithms or variations), a medium set with 40,000 sets of predictions from 250 
experts, and a large set with 100,000 sets predictions from 1151 experts. The three data sets each were 
evenly divided into a scoring subset containing only the individual expert  predictions and a training 
subset containing both the expert predictions and the actual values for training. The training values 
were obtained from the Netflix Prize dataset by the organizers of the AusDM Challenge. 

This report mainly describes on my experiments and results using the RMSE data sets and scoring 
criterion.  A simple blending model was also applied to the AUC data sets. 
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1.  Linear Perceptron Blender:

My initial focus was on using neural network (NN) methods for blending results. I first tried using a 
classical two layer NN (Multilayer Perceptron) with sigmoid first-layer units and a linear output unit, 
trained using back-propagation,  but was unable to find sets of learning parameters that resulted in a 
'good' blend (better than the 'best 10 experts'  benchmark). At this point I tried an even simpler NN, the 
single-layer linear perceptron. This is perhaps the simplest possible NN structure:

Figure 1 – Linear Perceptron

The single-layer linear perceptron  provides an output that is a linear weighting of the various inputs, 
and provides a model structurally identical to a linear regression, although parameters may vary 
depending on the details of the training process.  The algorithm for training a single-layer linear 
perceptron  is straightforward:

Linear Perceptron Training Algorithm:

'  X(i,j) is array of inputs, by exemplar and predictor 
' Y(i) is array of training outputs, by exemplar
' Eta is the learning rate (Initially set to 6E-10 / # of predictors)
' Eta_Decay is decay rate for learning constant after each epoch (0.999)
' W(j) is a weight vector that defines the linear mix of the predictors
' W(0) is a bias term (weighted by 3000, a 'typical' input value

For Epoch = 1 to Max_Epochs
For I = 1 to Max_Exemplars

' estimate output for exemplar
Est = W(0) * 3000
For J = 1 to Max_Predictors

Est +=  W(J) * X(I, J)
Next J
Err = Y(I) – Est

' train weights from error
W(0) += Err * Eta * 3000
For J = 1 to Max_Predictors

W(J) += Err * Eta * X(I, J)
Next J

Next I
Eta *= Eta_Decay

Next Epoch
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Initially, the weights were set to 1/MAX_PREDICTORS, except for W(0), which was set to zero. This 
resulted in an initial model of averaging all predictors.

Some experimentation was needed to find appropriate values for Eta and Eta_Decay, as well as the 
maximum number of epochs to train for. The number of epochs was finally chosen so that a total of 
50,000,000 exemplars would be presented, regardless of the number of exemplars in the training set 
(ranging from 15,000 for the small set to 50,000 in the large set). One key to obtaining good 
generalization performance seemed to be to train the network relatively quickly at first, and more 
slowly in successive iterations.  Having the W(0) constant bias provided a slight improvement in both 
triaining and scoring accuracy.

The following table shows the  training RMSEs seen for each data set as well as the scoring RMSE for 
the small data set:

Data Set Bias Term? Train RMSE Score RMSE
Small N 861.72 879.19

Y 861.63 879.10

Medium Y 860.75 -

Large Y 864.63 -

While the perceptron yielded good results compared to other simple methods such as linear regression, 
I found it to be unsatisfying in that the coefficients do not yield a great deal of insight into the blending 
process and seem to be numerically ill-formed, in that a great deal of the signal from the individual 
predictors mutually cancels out. For example, in the fully trained network for the small dataset, 
approximately 80% of the numerical value of the predictors is expended in cancellation!  In a classical 
linear regression, this situation would make a model's results highly suspect.  

2. Variations:

I also tried a number of variations on the basic perceptron technique described above. In a few cases, 
these attempts yielded marginal RMSE improvements, but more often resulted in a loss of predictive 
accuracy. The best improvements hardly justified the additional model complexity.

Randomly-connected Partial Perceptron Ensemble:

Inspired by Phil Brierley's technique of combining a number of linear regressions each covering only a 
fraction of the total predictors, I performed an analogous experiment using perceptrons. I averaged the 
result of an ensemble of 6 perceptrons, each with its inputs connected to roughly 50% of the available 
experts, as illustrated schematically in Figure 2. Each perceptron was trained independently of the 
others, and their outputs were averaged together only when used for producing blended predictions. 
The results were not significantly different than those yielded by the single perceptron blending model 
(879.11 vs. 879.10 for test score). 
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Figure 2 – Randomly Connected Partial Perceptron Ensemble

Transformation of Variables:

Another idea was to transform the data so that the perceptron might have a different view of it. This 
might be used in two ways. First, the transformed data might enable a perceptron to yield a better 
blend. Second, by transforming the data in a number of different ways, and training different 
perceptrons on each transformation, the ensemble of the results might generalize better than those of a 
single perceptron. A schematic representation of a perceptron with data transformation is shown in 
Figure 3.

Figure 3 – Variable Transformation 

To ensure that the perceptron was training to minimize RMSE referenced to the original data (and not 
the transformed data – which could be significantly different), the inverse transformation was applied 
to the output. To train the weights, this also meant that the derivative of the inverse transform needed to 
be calculated to back-propagate the error signal. The need to select transformation functions that were 
both  continuous and had inverses that were both continuous and continuously differentiable limited the 
selection of functions. To test this idea, I implemented this scheme using X^2 and sqrt(X) as transform 
functions. Neither yielded significantly different test score RMSEs than the original basic linear 
perceptron. When these two results were averaged with those of the linear perceptron, however, the 
ensembled results got a test score RMSE of 878.91, about a 0.19  improvement over that of the basic 
perceptron. 
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Fuzzy Perceptron:

This ensembling method was based on the hypothesis that a single perceptron model would not be 
optimal over the entire range of input values (1000-5000). A membership function was defined that 
categorized fuzzy membership into Low and High classes (for a 2-class model) and Low, Medium, and 
High classes (for a 3-class model).  

Figure 4 – Fuzzy Sets, 2-class (a) and 3-class(b)

Each membership class was assigned its own perceptron to be trained and to be used for evaluation. 
Figure 5 shows the arrangement for the two-class case. 

Figure 5 – Fuzzy Perceptron (2-set)
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The degree of membership in each class was used  to control both evaluation and training. In the 
evaluation phase, the outputs of the perceptrons representing each class were linearly combined 
proportional to the identified class membership. Class membership of an input vector (X) was 
identified on the basis of its average value, although other metrics (e.g. variance) could conceivably be 
used.  During training, the class membership information would be used to proportion the back-
propagated error among  the various class perceptrons. For example, an low-valued input exemplar, 
with for example an average of 2000, would generate a 75% LOW class membership and a 25% HIGH 
class membership (assuming 2 classes). The total output would be 0.75 x LOW_class_perceptron + 
0.25 x HIGH_class_perceptron. During training, the low class perceptron's training rate would be 0.75 
x ETA while the high class perceptron's training rate would be 0.25 x ETA for that particular exemplar. 

This elaboration allowed for a better fit to training data than the simple perceptron model, but 
unfortunately did not generalize as well. The following table shows training and test score RMSEs on 
the small dataset. 

Model Training RMSE Score RMSE
2-Class Perceptron 857.14 880.69

3-Class Perceptron 854.74 881.67

3. A More Intuitive (But Less Accurate) Blending Model:

I also explored other methods, none of which beat the prediction accuracy of the linear perceptron. 
While most of these attempts yielded were total dead-ends, in terms of both results and insight, one 
method stood out as providing an intuitively and simple model while providing results better than 
vanilla linear regression. This method was to search for a best combination of experts.

Selecting a best combination of experts is a different task than selecting the set of  best experts in that 
the objective function being optimized during 'training' is a function (the average) of the entire set. For 
example, an expert who is consistently low could be an optimal combination for an expert who is 
consistently high despite the case that neither expert considered individually may be very good. While 
finding the optimal set is a difficult problem because of the number of potential sets that could exist 
(2.25E16 possible sets of 10 experts can be selected from a group of 200), I found that a simple greedy 
optimization technique based on RMSE provided reasonable results.  

Greedy Best-Combination Algorithm:

1) Select initial random set of experts
2) evaluate RMSE (of their combined ratings)
3) select an expert 'X'  within the set to replace 
4) select an expert 'Y' outside the set as a replacement
5) re-evaluate RMSE with expert 'Y' substituted for expert 'X'
6) if new RMSE is better, then let 'Y' remain in set, otherwise return 'X' to set.
7) Repeat from 3 until no changes occur for a while
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Because the above algorithm employs a greedy replacement strategy,  it has a good chance of 
becoming trapped in local minima. Despite this drawback it delivers good predictive performance with 
a very simple resulting model – namely that of averaging a small number of expert predictions.

One surprising result of this algorithm is the size of  the set of of experts needed to produce substantial 
improvement. A combination of only 3 experts was needed to provide a predictive accuracy exceeding 
that of linear regression on the entire set of experts. The performance of 'best' combinations of various 
number of experts, can be seen in the table below. Figure 6 graphically depicts the performance. Note 
that accuracy decreases (RMSE increases) when the number of experts is increased bast 10.

Method Train RMSE Score RMSE
Average of 10 Best Experts 878.45 884.36

'Vanilla' Linear Regression n/a 882.82

Perceptron 861.63 879.1

Best Combination of 1  (Best Expert) 878.49 888.32

Best Combination of 2 872.29 884.35

Best Combination of 3 870.08 882.73

Best Combination of 4 869.90 882.39

Best Combination of 5 869.47 881.71

Best Combination of 7 869.14 881.89

Best Combination of 10 869.01 881.58

Best Combination of 15 868.98 882.32

Best Combination of 20 869.10 882.51

Figure 6 – Graphical Summary of Best-Combination-of-N Blender Performance
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Although several thousand iterations may be needed to converge on a final result, each iteration can be 
performed quickly, especially if the model is updated incrementally with entering and leaving experts. 
Additionally, the majority of the model convergence occurred within the first few hundred trials.

Because the model evaluation and expert selection processes are independent, it is straightforward to 
use this technique with prediction combination  methods other than simple averaging. Some alternate 
(but untried)  possibilities include:

• Median
• Geometric Mean
• Root-mean-squared average
• 'Trimmed' Average (toss out some number of high and low expert predictions)

4. Application to AUC Criteria

I also tried a few experiments on the AUC criteria that were based directly on my RMSE approaches. 
The first was to try training the linear perceptron using the [1,-1] target values in the AUC data sets. 
This did not work very well, resulting in a test score GINI of only 0.8727,  which was actually worse 
than the average of the top 10 experts.  I then adapted the 'average of best set of predictors approach 
described in the previous section, using GINI as an optimization objective function instead of RMSE. 
This worked better, with the average of a 'best set' of 10 predictors yielding a 0.8760, a slight 
improvement over the hill climbing benchmark. Although the performance was hardly optimal, this 
exercise demonstrated the generality and flexibility of the 'best set' approach to blending.

5. Summary:

The linear perceptron, an extremely simple neural network/machine learning technique provided a 
competitive degree of ensembling performance, exceeding that of linear regression, and approaching 
the best demonstrated publicly to date in the AUSDM 2009 challenge.  This method has the advantage 
of simplicity, as the core training routine was coded in fewer than 25 lines of VB.NET 2008. 

Despite the perceptron's effectiveness and simplicity, it does not provide simple insights into the model 
it develops internally. For this reason I explored conceptually simpler blending techniques and found 
that a greedy combinatorial search could be used to identify small sets of predictor variables that 
provided good results when simply averaged. While the accuracy of this technique was significantly 
less than that of the perceptron method, it exceeded more sophisticated methods such as blending on 
the basis of a linear regression model, and the resulting model is easy to understand.
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Appendix – Summary of Ensembling Performance (RMSE):

The following table lists results of methods I tried that are described in this report, along with a few 
benchmark methods from the leaderboard. Each method also has an 'relative performance' rating 
assigned where 0% is defined as the performance of the overall average of all experts (naïve blending) 
and 100% is defined as the performance of the high scoring method at the time of writing (Team 
Optibrebs, Nov 15, 2009).
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Method Description Train Score Test Score
BEST - 877.91 100.00%

A - 878.91 93.25%
B 862.51 879.07 92.18%
C 861.63 879.10 91.97%
D - 879.11 91.91%
E 863.68 879.11 91.91%
F 861.72 879.19 91.37%
G 857.14 880.69 81.28%
H Best Combination of 10 869.01 881.58 75.29%
I 854.74 881.67 74.68%
J Best Combination of 5 869.47 881.71 74.41%
K Best Combination of 7 869.14 881.89 73.20%
L Best Combination of 15 868.98 882.32 70.31%
M Best Combination of 4 869.90 882.39 69.84%
N Best Combination of 20 869.10 882.51 69.03%
O Best Combination of 3 870.08 882.73 67.55%
P Linear Regression - 882.82 66.94%
Q Best Combination of 2 872.29 884.35 56.65%
R Average of Best 10 Experts 871.02 884.36 56.58%
S Best Expert 878.49 888.32 29.94%

BASELINE 878.45 892.77 0.00%

Relative 
Performance

Top-of-Leaderboard (Team Optibrebs)
Average of methods B,C,E
Perceptron, sqrt(x) transform
Perceptron w/bias term
Perceptron ensemble (6 x 50% cover)
Perceptron, x 2̂ transform
Perceptron no bias term
2-Class Fuzzy Perceptron

3-Class Fuzzy Perceptron

Naïve (Average all Experts)
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1 Introduction 
   This report contains a quick review of investigations and methods which are applied to AusDM 2009 
challenge by Green Ensemble team. Green Ensemble is group of undergraduate students at school of 
electrical and computer engineering at Shiraz university under supervision of Dr. Ashkan Sami, Assistant 
Professor of CSE and IT Department at School of Electrical and Computer Engineering. 
 The objective of AusDM challenge is to combine results of predictor models to obtain better results than 
any individual model. Three sizes of data sets, small, medium and large are available for two tasks, RMSE 
and AUC challenge. Each data set splits into train data set and score data set. Train data set has predictions of 
models. In AUC challenge, the goal is to classify the movies into two classes; 1 and -1.  
 

2 Data Analyze 
   In this part we discuss some important statistical properties of the data sets. In RMSE challenge, each 
data set presents results of different prediction models for movies. Ranks are 1, 2, and 5 which are multiplied 
by 1000.  Figure 1 shows the actual distribution of ranks for movies in the medium data set for RMSE 
challenge. Most ranks are distributed over ranks 3 to 5. In fact predicting these ranks will have direct effect 
on accuracy of our ensemble. Other data sets have the same form of distribution.  Figure 2 contains the 
same type of information for small data set. 
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Figure 1: Actual Distribution of ranks for medium data set 

 

 
Figure 2: Actual Distribution of ranks for small data set 
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Next property which is investigated is how good models predict ranks. The distribution of RMSE of models 
for predicting each rank is shown in Figure 3 to Figure 7. Figure 3  shows that models are predicting with 
high order of magnitude of error when they are predicting movies with rank 1000 (small data set for 
RMSE).  Generally models give prediction 3000 to movies with rank 1000 and 2000.  In other words, it 
is not clear how to distinguish among 1000, 2000 and 3000 when the output of the model is around 3000.  
Stated differently, it is difficult to classify among 1000, 2000 and 3000 ranked movies. In addition to 
RMSE, some statistical tests and measures like K-S test, KL divergence and mutual information also show 
that these three classes are overlapping and hard to distinguish. So we investigate regression methods. 

 
Figure 3: Distribution of RMSE when actual rank is 1000 
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Figure 4: Distribution of RMSE when actual rank is 2000 
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Figure 5: Distribution of RMSE when actual rank is 3000 
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Figure 6: Distribution of RMSE when actual rank is 4000 
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Figure 7: Distribution of RMSE when actual rank is 5000 

 

 

3 Review of Methods 
We have tried various methods.  The below list presents a sample of the tools and techniques deployed to 
build ensemble. 

RMSE CHALLENGE 

I. Genetic Algorithm: finding optimum set of weights for averaging predictions 
using cross over and mutation heuristics applied to randomly generated set of 
weight. (Davis, 1991) 

II. Ensemble Selection: hill-climbing approach for finding optimum bag of models 
(Caruana, Niculesco-Mizil, Crew, & Ksikes, 2004) 

III. Feed-Forward ANN:  fitting with two-layered FF-ANN (Menhaj & Hagan, 
1994) 

IV. Least-squares regression: using pseudo-inverse matrix of predictions to find best 
weights which could model train data set, same weights apply to test data set. 
(Chatterjee & Hadi, 1986) 
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V. Stepwise regression: same as Ensemble Selection but each model added to bag 
according to p-value and F-statistic. Stepwise regression is our best approach 
according to feedback of small size data set. (Draper & Smith, 1981) 
 

AUC CHALLENGE 
 

I. Regression Tree (Breiman, 1993) 
II. Multinomial logistic regression: our best approach (McCullagh & Nelder, 1990) 

 
   Methods and algorithms are implemented in C#, JAVA and MATLAB. Built-in functions, 
Statistics toolbox and Curve Fitting toolbox of MATLAB 7.6 were used. 
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Introduction: 

 
Contest problem is to predict the target variable using the model scores as independent variables in both 

medium and large datasets. We ensembled the scores of 50 samples using logistic regression technique. 

 

Ensemble Logistic Model:  

 

o Generate 50 random samples of 30,000 records, say S1, S2, …, S50 

o For each of the samples, we developed stepwise logistic model with the key features 
identified in the single logistic model using log-link function.  Let the probabilities be P1, 

P2, …, P50 

o The probabilities were combined to obtain the ensemble logistic score using 
methodologies like 

 Average(P1, P2, …, P50) 

 Average (Min(P1, P2, …, P50), Max(P1, P2, …, P50) ) 
 

RMSE: 
 

 Logistic regression model was built for hundreds of samples with selection = cp criteria. The 
score with best cp was selected from each interation and then we ensembled the scores. 
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Abstract

In this paper we present our solution for the AusDM Analytic Chal-
lenge 2009. We applied a simple approach based on a sophisticated vari-
able selection technique. The basic idea is looking at the pairs of models
and searching for those pairs where the errors of the two models compen-
sate each other.

As the final results of the challenge are unknown at the time of writing
this paper, we can only report preliminary results on the small data set:
according to this, despite its simplicity, our technique is less than 0.1%
worse than the currently best method1.

1 Introduction

The topic of the AusDM Analytic Challenge 2009 was ensembling: “Ensem-
bling, Blending, Committee of Experts are various terms used for the process
of improving predictive accuracy by combining models built with different al-
gorithms, or the same algorithm but with different parameter settings.”2 This
technique is frequently used to improve predictive models, see e.g. [4, 3, 2]. On
the one hand some fundamental reasons are known, why ensembles work better
than single models (these reasons are described for example in [1]), on the other
hand, how ensembles are “actually achieved in practice maybe somewhat arbi-
trary. One of the drawbacks in researching the problem is that you first have to
generate a lot of models before you can even start. There have been numerous
predictive modelling competitions that could potentially provide good data sets
for such research - many models built by many experts using many techniques.
The Netflix Prize is one such competition that has been on going for nearly 3
years.”

117th November 2009, 11:40 GTM
2All the cited text in the Introduction is from http://www.tiberius.biz/ausdm09/
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In the Netflix challenge the task was to predict how users rate movies on a
1 to 5 integer scale (5=best, 1=worst). Participants of the challenge delivered
real numbers as predictions and the RMSE (Root Mean Squared Error) between
the predictions and the actual ratings was used as evaluation metric.

The Netflix challenge “recently finished, and the eventual winners were an
amalgamation of several teams that somehow combined their individual model
predictions. Over 1,000 sets of predictions have been provided by the two leading
teams (who actually ended up with the same score), The Ensemble and BellKor’s
Pragmatic Chaos.”

In the AusDM Analytic Challenge 2009 the task was to build an ensemble
over these provided predicitions. There were two subtasks “one to develop a
method to predict a continuous value” (RMSE-task) “and the other to predict
a binary value” (AUC-task). We only participated in the RMSE-subtask.

For the participants of the challenge 6 datasets were provided: for both tasks
there were small, medium and large datasets. During the challenge feedback was
given on the small dataset, but the final results were determined based on the
performance on the medium and large datasets (for which no feedback was
provided during the challenge).

2 A Simple Ensemble Technique

Ensembles work better than a single predictive model in those situations when
different predictive models have different error characteristics and their errors
can compensate each other. We build our simple ensembling technique based on
this observation. In fact, we applied a variant of stacking with linear regression
as meta learner.

For simplicity we will describe our technique in context of linear regression
(as meta learner) and RMSE as evaluation score, but the same technique work
with arbitrary classification or regression models (like SVMs, Bayesian Net-
works, Decision Tree, etc.) as meta learner and various evaluation scores (like
accuracy, AUC, etc.), thus our technique is quite general in spite of the current
description which is very specific. The only assumption we make, is that each
predictive model assisting in the ensemble delivers a prediction for the target.

While learning, we use a technique similar to 10 fold crossvalidation: first
we devide the train data into 10 splits, which are numbered 0, 1, 2. . . , 9. In the
1st fold the splits 0, 1, 2, 3 and 4 serve as basic train set and the rest as internal
evaluation set. In general, in the kth fold, the basic training set contains the
splits k mod 10, (k + 1) mod 10, (k + 2) mod 10, (k + 3) mod 10 and (k + 4)
mod 10, and the internal evaluation set contains the rest.

What we describe from now on, is done for each fold. Our ensembling tech-
nique looks at the pairs of models and searches for those pairs where the errors
of the two models compensate each other. For the simplicity of the description,
we introduce the model-pair graph. The model-pair graph is a weighted, undi-
rected, graph. Each vertex v of this graph corresponds to one of the models
that assist in the ensemble. All the vertexes are connected, i.e. the graph is a

2



complete graph. Each edge {vi, vj} has a weight reflecting how “good” is the
combination of the models vi and vj , that is how well they compensate each
other’s errors. The weight of {vi, vj} is determined on the basic train set : we
regard the average of the outputs of the models vi and vj as prediction for the
target variable, and we calculate the RMSE between this average and the actual
value of the target. This RMSE score will be the weight of the edge {vi, vj}.

We process the edges in order of their scores, beginning with the best edge.
(As in case of RMSE the smaller values indicate the better predictions, we
process the edges in ascending order with respect to their weights.) Let M
denote a set of models, initially M is the empty set. Let s denote the estimated
quality of our ensemble based on the models in M . Initially s is the worst
possible quality score, i.e. s = +∞ (positive infinity), as in case of RMSE
scores. Let ε = 0.25.

For each edge {vi, vj} the followings have to be done:

1. If both vi ∈M and vj ∈M , then proceed for the next edge,

2. else

(a) M ′ = M ∪ {vi, vj}.
(b) Train a multivariate linear regression over the outputs of the models

contained in M ′ using the basic train set, and evaluate it on the
internal evaluation set. Let s′ denote the evaluation score. If s′ is
better than s at least by ε (i.e. if (s′ + ε) < s for RMSE), than
M ←M ′ and s← s′.

(c) Proceed for the next edge.

This way for each fold we select a set of models M , or being more exact: we
get M0, M1,. . . , M9 for the folds 0,1,. . . ,9. Let N denote the set of such models
that are contained at least n = 4 times among the selected models, i.e. N is
a set of such models that are contained in at least n = 4 sets among the sets
M0,M1,. . . ,M9.

Finally we train a linear regression over the output of the models in N on
the whole training set and apply this for the unlabeled data. We built our
implementation on the linear regression of WEKA3 software package [5].

The hyperparameters (ε and n) are to be learned on a hold-out subset of the
train data that is disjoint both from the basic train set and from the internal
evaluation set.

3 Preliminary Evaluation and Outlook

As the challenge is not yet finished at the time of writing this paper, we only
report preliminary results that were achived on the small data set, where feed-
back was given to the participants. On the score set of the small data set, the
currently4 best method (Optibrebs) achieved RMSE of 877.907. Our technique

3http://www.cs.waikato.ac.nz/˜ml/index.html
417th November 2009, 11:40 GTM
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Table 1: Experiments
Method Performance (RMSE)

Optibrebs (currently best) 877.907
Simple Ensemble Technique (Our method) 878.612
Average Top 10 Experts (Baseline) 884.359
Best Expert (Baseline) 888.32
Average All Experts (Baseline) 892.77
Worst Expert (Baseline) 994.118

had RMSE of 878.612, which is less than 0.1 % worse, than the RMSE of the
best model, whereas the best baseline method (average top 10 experts) achived
RMSE of 884.359. The performances of our technique and the baseline methods
and the currently best method are summarized in Table 1.

The simple technique presented in this paper can be improved in several
directions, for example: (i) one can consider to check not only pairs, but also
triples of variables, (ii) new edge weighting strategies can be introduced, (iii) the
technique can simply be applied for other evaluation measures than RMSE. As
future work, we would also like to explore how general this simple ensembling
technique can be applied, as a first step on can measure the performance on
other data sets.

Acknowledgements. This work was co-funded by the EC FP7 project My-
Media under the grant agreement no. 215006. For inquiries please contact
info@mymediaproject.org.
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Abstract. This manuscript presents an approach based on n-fold cross 

validation and zooming carried out to solve the AusDM 2009 Challenge for 

combining experts’ scores for the NetFlix binary classification problem. The 

approach consisted of aggregating zoomed MLP systems trained in an n-fold 

cross-validation process. The zooming approach is the decomposition of the 

decision in two levels: the first level scored the whole set and the central tercile 

from the first level (most mixed) passed through another decisor trained only on 

that part of the labeled sample. Several constraints on the data processing are 

still to be overcome.   

1   Introduction 

The combination of the opinion of experts has been used in human committees for 

improving the quality of decisions for a long time and the idea has been formally 

introduced to the decision support systems by Wolpert [1] back in 1982. Few years 

later, Leo Breiman [2] systematized the combination approaches. In recent years, the 

winner approaches in data mining competitions have confirmed that committees are 

the far better than single solutions. This year the NetFlix winners have consolidated 

this approach and motivated the current challenge [3]. 

2   Proposed Approach 

The approach proposed by our team combines the scores of several instances of MLP 

architectures as had been done in previous competitions [4], [5]. Here the MLP 

systems are trained via an n-fold cross validation process. 

Each MLP system consists of two cascaded MLPs: the first level MLP is trained on 

a random sample of the labeled data, while the second level MLP is trained on the 

central tercile of another sample. The idea is to separate the easiest parts of the 

examples (top and bottom terciles) with the first level system and score the central 

tercile with another system trained focused on these mixed examples. 



The sequence of steps of data processing for the proposed approach is: 

Stage-1: Training 

1. Variables selection 

2. Variables creation 

3. n-fold cross-validation 

a. Training of first level MLPs with ¼ of the modeling sample 

b. Scoring the other ¾ of the sample 

c. Training the second level MLPs with the central tercile (¼) 

4. Performance evaluation on the n test sets: first and third terciles scored on 

the first level only while the second tercile scored also on the second level 

and re-scaled between the bottom and the top terciles 

Stage-2: Usage 

1. Score generation on the n trained Systems for the challenge data: First and 

third terciles scored on the first level only while the second tercile scored 

also on the second level and re-scaled between the bottom and the top 

terciles 

2. Score rank calculation on each of the n systems 

3. Selection of the median of the n systems for each example 

To select the most adequate variables, first their univariate contributions were 

measured with the AUC_ROC metrics, once that all were numerical variables. The 

top ten were selected and from the remaining ones, the five most dissimilar ones were 

preserved. Due to computational constraints Variance Inflation Factor (VIF) could 

only be used for variable selection within the LeaderBoard dataset. The other sets had 

the similarity calculated by their correlation. 

Some new input variables were created for capturing information from the existing 

experts’ scores. Average, standard deviation, median and asymmetry of the scores 

were some of these variables. All had their AUC_ROC calculated and were preserved 

totaling 24 input variables. 

To do the two-level training, the small and medium datasets were small for having 

completely statistically independent sets, considering that only MLPs had been 

implemented in the software platform. Therefore, training data were re-used in the 

two levels for these sets; only the large data set had statistically independent samples 

for training each level. The idea was to use logistic regression instead of MLPs 

because of the smaller need of examples and the speed of calculation but the software 

was not implemented yet. 

3   Conclusion 

Unfortunately, the software implementation needed for simulations took longer than 

expected and several constraints in data processing had to be faced for the challenge, 

just a few days from the deadline. 

The dimension of the input space was quite large for executing the analyses needed 

in reasonable time. Therefore, correlation had to be used for redundancy detection. 

MLPs demand too much data and forced the re-use of data in the two-level 

training. 



Applying the approach above in the challenge, NeuroTech Research, Development 

and Innovation team (NeuroTech RDI) reached an AUC_ROC=0.877742 on the 

LeaderBoard dataset, slightly better than the hill climbing baseline. Despite some 

drawbacks, the results might be better for the larger datasets. 
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1. Team name: EnsembleMaster09 

2. Team members: Seungho Huh, Taiping He 

3. Company: SAS Institute 

4. Description of the method: 

Since there are too many input variables, the main focus was to reduce the number of 

them. After experimenting with the SMALL datasets, we decided to use the following 

methods. 

 

a) AUC - Gradient Boosting 

Gradient Boosting is well known for its accuracy in classification. It also has intrinsic 

variable selection capability based on the Decision Tree feature. SAS Enterprise Miner 

has a node implementing this Gradient Boosting method. We used this node with the 

number of boosting iterations=50. 

 

b) RMSE - LASSO 

The LASSO is known as a good technique that naturally removes unimportant variables. 

SAS Enterprise Miner also has a node implementing the LASSO. We used this node with 

5-fold cross validation.   



EXL Team report on AUSDM 2009 competition submission

Team Structure

Sassoon Kosian (Lead)
Sahil Manocha
Preetesh Shukla
Anita Sachdeva

Blending Approaches

All the submitted scores are the result of blending using several approaches as outlined 
below. Each submission has a different set of approaches combined

1. Linear and Logistic Regressions on Bootstrapped sets
2. Linear and Logistic Regressions with coefficient blasting
3. Neural Networks
4. Hill climbing technique on random subsets

Blending of different approaches on final sets for submission used simple average on 
standardized scores.
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Abstract: AUC 

 

Joint Score: 

 The Joint score technique was to combine the predicted scores from various techniques to obtain 

the final prediction for each of the models.  

 Logistic regression model was built to predict the target variable using model scores as 

independent variables in both medium and large datasets. 

 Decision tree models were built for both medium and large datasets using the model scores as 

independent variables. TreeNet software was used to develop these models. 

 Logistic regression model was built to predict the target variable using the top 10 variables in the 

order of AUC of model scores. 

 The above 3 models were combined by averaging the scores and averaging the minimum and 

maximum of scores. 

 

Abstract: RMSE 

Decision tree model was built to predict the target variables using the independent variables.  Treenet 

was used to build decision tree model. 
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Introduction 
We addressed both problems using an advanced kernel classifier/predictor. The unique characteristics of 

our solutions are customized two-step parameterization of the classifier/predictor and best first search 

based feature selection that was used to improve both efficiency and predictive quality. We utilized out-

of-sample cross validation (CV) tests for the feature selection and parameterization on the training 

dataset to minimize overfitting.  The task 1 was implemented using Support Vector Regression (SVR) 

predictor and task 2 using Support Vector Machine (SVM) classifier. The experiments were performed 

using WEKA platform (http://www.cs.waikato.ac.nz/ml/weka/) and Java-based scripting. 

Task 1 
Step 1. Initial SVR parameterization 

 Small dataset was used 

 Top 20 attributes were chosen based on ranking using their individual RMSE error with 

respect to the target ranking 

 Using the 20 attributes, 4-fold cross-validated SVR learning with different parameters 

(cost parameter C, kernel type, kernel parameters) was carried out to minimize RMSE 

o best setup: C=0.1 ,RBF kernel,  gamma=0.01 → RMSE = 873.5 

Step 2.   Feature selection   

 Features were ranked based on the RMSE error for the 4-fold CV on the training set (for 

medium and large datasets 10000 samples were randomly chosen) using individual 

attributes with SVR parameterized in Step 1 

 Starting with the top ranked attribute, one attribute at a time was added and evaluated 

using RMSE (based on the 4-fold CV on the training set with SVR parameterized in Step 1). 

If a given attribute improved the RMSE then it was added to the selected attributes, 

otherwise it was rejected. A single scan through all ranked attributes was performed. 

 The following number of attributes was selected for the corresponding datasets: 

o Small: 41 

o Medium: 57 

o Large: 109 

 

http://www.cs.waikato.ac.nz/ml/weka/


Step 3.  SVR parameterization  

 For each training dataset using the selected features 4-fold CV based experiments were 

carried out to parameterize SVRs; the best setups for the corresponding datasets follow: 

o Small: C=0.1 ,RBF kernel,  gamma=0.1  

o Medium:  C=1, RBF kernel, gamma=0.01 

o Large: C=1, RBF kernel, gamma=0.01 

Step 4.  Building predictive models 

 Predictive models were established for each training dataset using features found in step 

2 and parameters found in step 3 

 The models were used to perform predictions on the corresponding test files. Predictions 

above 5000 were rounded down to 5000, whereas all predictions below 1000 were 

rounded up to 1000 

Task 2 
Step 1.  Initial SVM parameterization 

 Each dataset was parameterized separately, though for the large dataset the number of 

attributes was reduced to 250 by random selection and for the medium and large 

datasets the number of samples was reduced to 10000 by random selection 

 The 4-fold cross-validated SVM learning with different parameters (cost parameter C, 

kernel, kernel parameters) was carried out with the objective to minimize the Gini index 

o Small: C=30, RBF kernel, gamma=0.001 → Gini = 0.879 

o Medium: C=3, RBF kernel, gamma=0.1  → Gini = 0.375 

o Large: C=1, RBF kernel, gamma=0.01→ Gini = 0.675 

Step 2.  Feature selection 

 Features were ranked based on the Gini index value for the 4-fold CV on the training set 

(for medium and large datasets 10000 samples were randomly chosen) using individual 

attributes with SVM parameterized in Step 1 

 Starting with the top ranked attribute, one attribute at a time was added and evaluated 

using the Gini index value (based on the 4-fold CV on the training set with SVM 

parameterized in Step 1). If a given attribute improved the Gini value then it was added to 

the selected attributes, otherwise it was rejected. A single scan through all ranked 

attributes was performed; we added the top 10 ranked attributes for the medium dataset 

and the top 20 ranked attributes for the large dataset 

 The following number of attributes was selected for the corresponding datasets: 

o Small: 24 

o Medium: 30 

o Large: 38 



Step 3.  SVM parameterization  

 For each training dataset using the selected features 4-fold CV based experiments were 

carried out to parameterize SVMs; the best setups for the corresponding datasets follow: 

o Small: C=10,RBF kernel,  gamma=0.001  

o Medium:  C=3, RBF kernel, gamma=1 

o Large: C=0.1, RBF kernel, gamma=0.01 

Step 4.  Building predictive models 

 Predictive models were established for each training dataset using features found in step 

2 and parameters found in step 3 

 The models were used to perform predictions on the corresponding test files. Probability 

values generated by SVMs for all instances were submitted 
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